运用合理的过程执行顺序优化具有净化单元的多杂质氢网络
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of reasonable process execution sequence to optimize multi-impurity hydrogen networks with purification units
  • 作者:王焕云 ; 潘春晖 ; 郭琳琳
  • 英文作者:WANG Huan-yun;PAN Chun-hui;GUO Lin-lin;College of Mechanical and Electrical Engineering , Cangzhou Normal University;College of Chemistry and Chemical Engineering, Cangzhou Normal University;
  • 关键词:多杂质氢网络 ; 固定净化后氢浓度模型 ; 给定杂质移除率模型 ; 过程的执行顺序 ; 浓度差率 ; 互补源物流 ; 迭代设计 ; 最小氢消耗
  • 英文关键词:multi-impurities hydrogen network;;model of fixed purified hydrogen concentration;;model of given impurities removal ratio;;process execution order;;concentration difference rate;;complementation source;;iteration;;lowest hydrogen consumption
  • 中文刊名:GXHX
  • 英文刊名:Journal of Chemical Engineering of Chinese Universities
  • 机构:沧州师范学院机械与电气工程学院;沧州师范学院化学与化工学院;
  • 出版日期:2019-03-20 10:03
  • 出版单位:高校化学工程学报
  • 年:2019
  • 期:v.33
  • 基金:河北省自然科学基金(B2015110004)
  • 语种:中文;
  • 页:GXHX201903025
  • 页数:10
  • CN:03
  • ISSN:33-1141/TQ
  • 分类号:201-210
摘要
运用综合设计方法设计多杂质氢网络,满足过程的执行顺序不同,所得设计的外部源物流用量不同。需求物流的极限杂质浓度越小,外部源物流用量和净化后源物流用量一般越大。因此,按照需求物流的极限杂质浓度由小到大的顺序满足执行及按照外部源物流用量和净化后源物流用量由大到小的顺序满足执行都是合理的,而后者满足需求物流的排序方法目前还没有报道。为此,对于多杂质氢网络,为了降低外部源物流用量,提出该种确定合理的过程执行顺序的方法。满足一过程时,提出了浓度差率的概念,由互补源物流来满足,并由杂质负荷平衡和流量平衡计算出源物流的用量。首先运用该分配方法将当前源物流分别来满足各个未执行过程,依次优先按外部源物流用量和净化后源物流用量最大的过程首先执行的原则来确定过程的执行顺序。将之与设计给定杂质移除率模型(模型1)和固定净化后氢浓度模型(模型2)氢网络的迭代法分别设计2种模型的多杂质氢网络。对某一氢网络实例进行研究,该种方法的设计与文献相比,对于模型1,在净化后源物流杂质浓度略低的情况下,外部源物流用量、净化后源物流用量和燃料气排放量分别降低了4.05%、0.43%和4.94%;对于模型2,分别降低了1.60%、3.71%和2.00%。说明提出的方法是有效的和可行的。
        Hydrogen networks with multiple impurities were designed by an integrated design method, and the external source consumption varies with different process execution sequences. Lower demands of the maximum impurity concentration lead to larger consumption of external and purified sources. Therefore, both ascending of the maximum impurity concentration of the demands or descending of the consumption of the external source and purified source are reasonable. The latter method for satisfying the demands has not been reported. A method to determine reasonable execution sequences of the multi-impurity hydrogen network was proposed to reduce external source consumption. A concept of concentration difference rate was proposed when a process was satisfied by complementary sources, and source consumption was calculated by impurity load balance and flow rate balance. Each process was first satisfied by current sources using this method, and the execution sequence was determined according to the priority principle that the process with the biggest flow rate consumption of external and purified sources were executed. Two multi-impurity hydrogen networks were designed based on given impurities removal ratio(model one) and fixed purified hydrogen concentration(model two), respectively. Example hydrogen network studies show that compared with literature methods, for model one with slightly lower purified impurities concentration, the flow rate consumption of external sources, the flow rate consumption of purified sources and the flow rate emission of fuel gas are reduced by 4.05%, 0.43%and 4.05%, respectively. For model two, these values are 1.60%, 3.71% and 2.00%, respectively, which proves that the new method is efficient and feasible.
引文
[1]LVES J J.Analysis and design of refinery hydrogen distribution systems[D].Manchester:University of Manchester Institute of Science and Technology,1999.
    [2]LIU F,ZHANG N.Strategy of purifier selection and integration in hydrogen networks[J].Chemical Engineering Research&Design,2004,82(A10):1315-1330.
    [3]FOO D C Y,MANAN Z A.Setting the minimum utility gas flow rate targets using cascade analysis technique[J].Industrial&Engineering Chemistry Research,2006,45(17):5986-5995.
    [4]NG D K S,FOO D C Y,TAN R R.Automated targeting technique for single-impurity resource conservation networks.Part 2:Single-pass and partitioning waste-interception systems[J].Industrial&Engineering Chemistry Research,2009,48(16):7647-7661.
    [5]LIU GL,LI H,FENG X,et al.Novel method for targeting the optimal purification feed flow rate of hydrogen network with purification reuse/recycle[J].AIChE Journal,2013,59(6):1964-1980.
    [6]ZOU J Y,CIAO Z W,JIANG B B,et al.Pinch sliding approach for targeting hydrogen and water networks with different types of purifier[J].I7&EC Research,2013,52(25):8538-8549.
    [7]YANG M B,FENG X,CHU K H,et al.Graphical method for integrating purification processes in hydrogen systems with constraints of flow rate and concentration[J].Industrial&Engineering Chemistry Research,2014,53(8):3246-3256.
    [8]ZHANG Q,LIU G,FENG XIAO,et al.Hydrogen networks synthesis considering separation performance of purifiers[J].International Journal of Hydrogen Energy,2014,39(16):8357-8373.
    [9]DENG C,WEN Z K,FOO D C Y,et al.Improved ternary diagram approach for the synthesis of a resource conservation network with multiple properties.2.Regeneration reuse/recycle[J].Industrial Engineering Chemistry Research,2014,53(45):17671-17679.
    [10]杨敏博,冯霄.提纯回用氢网络的夹点变化规律[J].化工学报,2013,64(12):4544-4549.YANG M B,FENG X.Change rules of pinch point for hydrogen distribution systems with purification reuse[J].CIESC Journal,2013,64(12):4544-4549.
    [11]代旺,刘桂莲.提纯回用氢网络最优提纯浓度的简化确定法[J].计算机与应用化学,2014,31(12):1433-1438.DAI W,LIU G L.A simplified method to identify the optimal purification feed purity of the hydrogen network with purification reuse[J].Computers and Applied Chemistry,2014,31(12):1433-1438.
    [12]刘桂莲,王颖佳.考虑提纯能耗的氢网络提纯优化[J].清华大学学报(自然科学版),2016,56(7):717-722.LIU G L,WANG Y J.Optimization of a hydrogen network with consideration of the energy consumption for purification[J].Journal of Tsinghua University(Natural Science Edition),2016,56(7):717-722.
    [13]YANG M B,FENG X,LIU G L.A unified graphical method for integration of hydrogen networks with purification reuse[J].Chinese Journal of Chemical Engineering,2016,24(7):891-896.
    [14]WANG D,RENJIE S,DI Z,et al.The integration based method for identifying the variation trend of fresh hydrogen consumption and optimal purification feed[J].Energy,2017,119(15):732-743.
    [15]LIAO Z W,RONG G,WANG J D,et al.Rigorous algorithmic targeting methods for hydrogen networks-Part II:Systems with one hydrogen purification unit[J].Chemical Engineering Science.2011,66(5):821-833.
    [16]潘春晖,王焕云,马力,等.具有净化单元氢网络的迭代设计方法[J].化工学报,2013,64(6):2153-2159.PAN C H,WANG H Y,MA L,et al.An iterative method for designing hydrogen networks with purification units[J].CIESCJournal,2013,64(6):2153-2159.
    [17]WU S D,WANG Y F,FENG X.Unified model of purification units in hydrogen networks[J].Chinese Journal of Chemical Engineering,2014(6):730-733.
    [18]WANG Y F,WU S D,FENG X,et al.An energy-based approach for hydrogen network integration energy[J].Energy,2015,86:514-524.
    [19]刘金豪,李爱红,刘智勇.简捷法确定提纯回用氢网络目标值[J].化工学报,2016,67(3):1008-1014.LIU J H,LI A H,LIU Z Y.A simple method for targeting hydrogen networks with purification unit[J].CIESC Journal,2016,67(3):1008-1014.
    [20]ZHOU L,LIAO Z W,WANG J D.Hydrogen sulfide removal process embedded optimization of hydrogen network[J].International Journal of Hydrogen Energy,2012,37(23):18163-18174.
    [21]窦维敏,刘桂莲,冯霄,等.变压吸附提纯氢装置最小分离功的研究[J].石油化工,2012,41(7):815-819.DOU W M,LIU G I,FENG X,et al.Minimum separating work for hydrogen purification by pressure swing adsorption[J].Petrochemical Technology,2012,41(7):815-819.
    [22]LIAO Z W,TU G,LOU J Y,et al.The influence of purifier models on hydrogen network optimization:Insights from a case study[J].Hydrogen Energy.2016,41(10):5243-5249.
    [23]WEI L L,LIAO Z W,JIANG B B,et al.Automatic design of multi-impurity refinery hydrogen networks using mixing potential concept[J].Industrial and Engineering Chemistry Research.2017,56:6703-6710.
    [24]邓春,周业扬,江苇,等.耦合变压吸附简化模型的提纯回用氢网络协调优化[J].清华大学学报(自然科学版),2016,56(7):735-742.DENG C,ZHOU Y Y,JIANG W,et al.Coordinated optimization of hydrogen networks with purification reuse coupled with a shortcut model of the pressure swing adsorption[J].Journal of Tsinghua University(Natural Science Edition),2016,56(7):735-742.
    [25]潘春晖,王焕云,郭琳琳.具有净化单元的多杂质氢网络模型的集成[J].计算机与应用化学,2017,34(8):613-620.PAN C H,WANG H Y,GUO L L.Integrating the model of the hydrogen networks with purification units and multiple contaminants[J].Computers and Applied Chemistry,2017,34(8):613-620.
    [26]潘春晖,王焕云.运用多氢源匹配法设计多杂质氢分配网络[J].石油化工,2013,42(11):1218-1223.PAN C H,WANG H Y.Design of hydrogen networks with multiple impurities by using sources matching method[J].Petrochemical Technology,2013,42(11):1218-1223.
    [27]LIU Z Y,YANG Y,WAN L Z,et al.A heuristic design procedure for water-using networks with multiple contaminants[J].AIChEJournal,2009,55(2):374-382.
    [28]PRAKASH R,SHENOY U V.Targeting and design of water networks for fixed flowrate and fixed contaminant load operations[J].Chemical Engineering Science,2005,60(1):255-268.
    [29]刘桂莲,唐明元,冯霄.多杂质氢网络的优化[J].石油化工,2009,38(4):419-422.LIU G L,TANG M Y,FENG X.Optimization of hydrogen network with multi-impurities[J].Petrochemical Technology,2009,38(4):419-422.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700