离子型稀土矿浸出前后工艺矿物学研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Technological Mineralogy of Ion-Type Rare Earth Ore before and after Leaching
  • 作者:刘庆生 ; 李江霖 ; 常晴 ; 邱廷省
  • 英文作者:Liu Qingsheng;Li Jianglin;Chang Qing;Qiu Tingshen;College of Metallurgy and Chemical Engineering,Jiangxi University of Science and Technology;Faculty of Resource and Environmental Engineering,Jiangxi University of Science and Technology;
  • 关键词:离子型稀土 ; 稀土浸出 ; 工艺矿物学
  • 英文关键词:ionic rare earth mine;;rare earth leaching;;process mineralogy
  • 中文刊名:ZXJS
  • 英文刊名:Chinese Journal of Rare Metals
  • 机构:江西理工大学冶金与化学工程学院;江西理工大学资源与环境工程学院;
  • 出版日期:2018-04-09 11:14
  • 出版单位:稀有金属
  • 年:2019
  • 期:v.43;No.274
  • 基金:国家自然科学基金项目(51564019)(51674125)资助
  • 语种:中文;
  • 页:ZXJS201901012
  • 页数:10
  • CN:01
  • ISSN:11-2111/TF
  • 分类号:95-104
摘要
为了研究离子型稀土矿浸出前后的工艺矿物学,以柱浸实验为基础,通过X射线衍射仪(XRD),矿物解离分析仪(MLA),傅利叶交换-红外分析仪(FT-IR), X射线荧光分析仪(XPS),扫描电镜(SEM)等多种测量手段对稀土原矿与浸出尾矿的表面组成和结构进行对比分析。研究结果表明:离子型稀土矿主要由高岭石、钾长石、石英、金云母、褐铁矿等矿物组成,稀土含量仅含0.12%左右;浸出过后Al, RE, Fe, O元素相对含量下降, K, Si元素含量相对上升; Al减少的主要原因是高岭石、褐铁矿、金云母等矿物与浸出剂发生溶解反应造成的,浸出后矿体结构遭到破坏; Fe减少的主要原因是部分氧化铁胶体被溶解以及浸出过后离子型稀土矿中的水合铁离子进入到了溶液中。钾长石、石英等矿物在浸出过程中基本不参与反应;元素N在稀土原矿中主要以有机物的形式存在,浸出后稀土矿中发生了离子交换反应,大量N元素以-NH_2键存在于尾矿中,有机态N大量减少,有机态N的减少会破坏矿体的胶结体结构,使矿体中团聚体的稳定性降低,进而使矿体的整体稳定性下降。Al, Fe等元素随着矿体的部分溶解而进入到溶液中,使浸出液含有杂质。本实验进一步完善了稀土浸出理论,并为稀土浸出以及矿山防护提供了理论依据。
        In order to study the process mineralogy of ionic rare earth ore, the surface composition and structure of ionic rare earth ore before and after leaching were investigated using column leaching and different experimental techniques, such as X-ray diffraction(XRD), mineral liberation analyzer(MLA), infrared spectroscopy(FT-IR), and X-ray photoelectron spectroscopy(XPS). The results showed that the ionic rare earth ore was mainly composed by kaolinite, orthoclase, quartz, limonite and some other minerals, and the content of rare earth was about 0.12%. The relative content of Al, RE, Fe and O decreased after leaching, while some elements such as K and Si had a increase in their relative content. The main reason of the decrease of Al was due to the dissolution reaction between minerals such as kaolinite, limonite and leaching agent, and thus the structure of the ore body was partially destroyed after the leaching. The reason for Fe decrease was that part of the iron oxide colloid was dissolved and the hydrated iron ions in the ionic rare earth ore were leached into the solution after the leaching. Minerals such as orthoclase and quartz did not participate in the reaction during the leaching process. Elemental N existed mainly in the form of organic matter in the rare earth ores. After leaching, ion exchange reaction took place in the rare earth ores. A large amount of N was present in the tailings with-NH_2 bonds, and the amount of organic N was greatly reduced. The reduction of the organic N destroyed the structure of the cemented body of the ore, which reduced the stability of the aggregates in the ore and further reduced the overall stability of the ore body. The partially dissolution of the ore made Al, Fe and other element into the solution, which made the leachate contain impurities. This experiment further perfected the theory of rare earth leaching, and provided theoretical basis for rare earth leaching and mine protection.
引文
[1] Zhang L, Wu K X, Chen L K, Zhu P, Ouyang H. Overview of metallogenic features of ion-adsorption type REE deposits in Southern Jiangxi Province [J]. Journal of the Chinese Society of Rare Earths, 2015, 33(1): 10.(张恋, 吴开兴, 陈陵康, 朱平, 欧阳怀. 赣南离子吸附型稀土矿床成矿特征概述 [J]. 中国稀土学报, 2015, 33(1): 10.)
    [2] Qiu T S, Zhu D M, Fang X H, Zeng Q H, Gao G K, Zhu H L. Leaching kinetics of ionic rare-earth in ammonia-nitrogen wastewater system added with impurity inhibitors [J]. Journal of Rare Earths, 2014, 32(12): 1175.
    [3] He Z Y, Zhang Z Y, Yu J X, Xu Z G, Xu Y L, Zhou F, Chi R. Column leaching process of rare earth and aluminum from weathered crust elution-deposited rare earth ore with ammonium salts [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(6): 3024.
    [4] Xiao Y F, Huang L, Long Z Q, Feng Z Y, Wang L S. Adsorption ability of rare earth elements on clay minerals and its practical performance [J]. Journal of Rare Earths, 2016, 34(5): 543.
    [5] Tian J, Yin J Q, Chi R, Rao G H, Jiang M T, Ouyang K X. Kinetics on leaching rare earth from the weathered crust elution-deposited rare earth ores with ammonium sulfate solution [J]. Hydrometallurgy, 2012a, 101(3-4): 166.
    [6] Zhou H P, Hu J, Luo X P, Zhong Z G. Percolation leaching behavior of ion-adsorption-type rare earth ore [J]. Chinese Journal of Rare Metals, 2018, 42(5): 531.(周贺鹏, 胡洁, 罗仙平, 钟志刚. 离子型稀土矿渗流溶浸行为研究 [J]. 稀有金属, 2018, 42(5): 531.)
    [7] Tian J, Chi R A, Yin J Q. Leaching process of rare earths from weathered crust elution-deposited rare earth ore [J]. Transactions of Nonferrous Metals Society of China, 2010, 20(5): 892.
    [8] Georgiana A Moldoveanu, Vladimiros G Papangelakis. Recovery of rare earth elements adsorbed on clay minerals: desorption mechanism [J]. Hydrometallurgy, 2012, 117-118(4): 71.
    [9] Li Y X, Zhou X M, Liu Y Z, Li D P, Li J, Tang Q. Development of high efficiency extraction and separation technologies of rare earths from ion-adsorbed type deposit [J]. Journal of the Chinese Society of Rare Earths, 2012, 30(3): 257.(李永绣, 周新木, 刘艳珠, 李东平, 李静, 唐群. 离子吸附型稀土高效提取和分离技术进展 [J]. 中国稀土学报, 2012, 30(3): 257.)
    [10] Qiu T S, Fang X H, Wu H Q, Zeng Q H, Zhu D M. Leaching behaviors of iron and aluminum elements of ion absorbed rare earth ore with a new impurity depressant [J]. Transactions of Nonferrous Metals Society of China, 2013, 24(9): 2896.
    [11] He Z Y, Zhang Z Y, Yu J X, Chi R A. Behaviour of rare earth,aluminum and ammonium in leaching process of weathered crust elution-deposited rare earth ore [J]. Chinese Rare Earths, 2015, 36(6): 18.(何正艳, 张臻悦, 余军霞, 池汝安. 风化壳淋积型稀土矿浸取过程中稀土和铝及铵的行为研究 [J]. 稀土, 2015, 36(6): 18.)
    [12] Zeinab Bakhshipour, Afshin Asadi, Bujang B K Huat. Effect of acid rain on geotechnical properties of residual soils [J]. Soil and Foundations, 2016, 56(6): 1008.
    [13] Xiao G Y, Chen X J, Wei C F, Huang X, Chen L. Mechanism of permeability and control of compaction for red clay under the influence of acid rain [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 3283.(肖桂元, 陈学军, 韦昌富, 黄翔, 陈龙. 酸雨作用下红黏土渗透性影响机制及压实度控制 [J]. 岩石力学与工程学报, 2016, 35(S1): 3283.)
    [14] Luo S H, Yuan L, Wang G S, Hu S L, Wang X L. The effect of leaching on the strength of ion-adsorption rare-earth ore [J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 58.(罗嗣海, 袁磊, 王观石, 胡世丽, 王小玲. 浸矿对离子型稀土矿强度影响的试验研究 [J]. 有色金属科学与工程, 2013, 4(3): 58.)
    [15] Wang F, Zhang Y M, Huang J, Liu T, Zhao J, Zhang G B. Thermodynamics of Fluorine to enhance leaching of Vanadium from stone coal [J]. Nonferrous Metals (Extractive Metallurgy), 2013, (9): 41.(王非, 张一敏, 黄晶, 刘涛, 赵杰, 张国斌. 氟离子促进石煤提钒浸出过程的热力学研究 [J]. 有色金属(冶炼部分), 2013, (9): 41.)
    [16] Gu Y Y, Su S, Mo H B, Xu W Y. Research on the new technology of activated roasting-acid leaching of potash feldspar [J]. Multipurpose Utilization of Mineral Resources, 2012, (1): 36.(古映莹, 苏莎, 莫红兵, 徐文泱. 钾长石活化焙烧-酸浸新工艺的研究 [J]. 矿产综合利用, 2012, (1): 36.)
    [17] Fan C Z, Zhang Y, Chen Z H, Zhu Y, Fan X T. The study of clay minerals from weathered crust rare earth ores in southern Jiangxi Province [J]. Acta Petrologica et Mineralogica, 2015, 34(6): 803.(范晨子, 张誉, 陈郑辉, 朱云, 樊兴涛. 江西赣南风化淋滤型稀土矿床中的粘土矿物研究 [J]. 岩石矿物学杂志, 2015, 34(6): 803.)
    [18] Li G L, Fu Y, Li B Q, Zheng T H, Wu F Q, Peng G Y, Xiao T Q. Micro-characteristics of soil aggregate breakdown under raindrop action [J]. Catena, 2018, 162(3): 354.
    [19] Wang X H, Yang Z J, Liu X F, Lin W S, Yang Y S, Liu Z J, Zhao B J, Su R L. Effect of different forms of Fe and Al oxides on soil aggregate stability in mid-subtropical mountainous area of southern China [J]. Acta Ecologica Sinica, 2016, 36(9): 726.(王小红, 杨智杰, 刘小飞, 林伟盛, 杨玉盛, 刘志江, 赵本嘉, 苏瑞兰. 中亚热带山区土壤不同形态铁铝氧化物对团聚体稳定性的影响 [J]. 生态学报, 2016, 36(9): 726.)
    [20] Nie X D, Li Z W, Huang J Q, Liu L, Xiao H B, Liu C, Zeng G M. Thermal stability of organic carbon in soil aggregates as affected by soil erosion and deposition [J]. Soil and Tillage Research, 2018, 175(2018): 82.
    [21] Gao W D, Zhou T Z, Ren T S. Conversion from conventional to no tillage alters thermal stability of organic matter in soil aggregates [J]. Soil Science Society of America Journal, 2015, 79: 585.
    [22] Fan C H, Ma R H, Hua L, Wang J H, Wang H J. FTIR and XPS analysis of characteristics of synthesized zeolite and removal mechanisms for Cr(Ⅲ) [J]. Spectroscopy and Spectral Analysis, 2012, 32(2): 324.(范春辉, 马宏瑞, 花莉, 王家宏, 王海军. FTIR和XPS对沸石合成特性及Cr(Ⅲ)去除机制的谱学表征 [J]. 光谱学与光谱分析, 2012, 32(2): 324.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700