大鼠高加速度离心加载装置:高加速度环境下动物的力学生物学响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A centrifuge device for high acceleration loading in rats:mechanobiological responses of animals in a high-acceleration environment
  • 作者:高子剑 ; 于露 ; 高丽兰 ; 张春秋 ; 张西正
  • 英文作者:Gao Zijian;Yu Lu;Gao Lilan;Zhang Chunqiu;Zhang Xizheng;Key Laboratory of Advanced Electromechanical System Design and Intelligent Control,National Experimental Teaching Demonstration Center of Mechatronics Engineering,School of Mechanical Engineering,Tianjin University of Technology;Institute of Medical Equipment of Academy of Military Medical Sciences;Institute for Applied Mechanics and Biomedical Engineering,Taiyuan University of Technology;
  • 关键词:加速度 ; 生物力学 ; 离心 ; 组织工程 ; 高加速度 ; 离心加载 ; 高加速度加载机 ; 有限元模型 ; 模态分析 ; 共振 ; 振型 ; 大鼠 ; 组织构建
  • 英文关键词:,Acceleration;;Biomechanics;;Centrifugation;;Tissue Engineering
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:天津市先进机电系统设计与智能控制重点实验室机电工程国家级实验教学示范中心天津理工大学机械工程学院;军事医学科学院卫生装备研究所;太原理工大学应用力学与生物医学工程研究所;
  • 出版日期:2018-10-17 11:13
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.860
  • 基金:国家自然科学重点基金(11432016),项目负责人:张西正;国家自然科学基金面上项目(81741141),项目负责人:张春秋~~
  • 语种:中文;
  • 页:XDKF201903010
  • 页数:6
  • CN:03
  • ISSN:21-1581/R
  • 分类号:50-55
摘要
背景:载人航天器发射与返回、舰载机的起飞与降落,会使航天员、飞行员处在高加速度(超重)环境中,高加速度环境会对细胞、器官、动物体等产生重要影响。高加速度离心加载机是一种可以为动物个体及细胞提供高加速度力学环境的装置,在航空航天的力学生物学、组织工程研究中起基础平台作用,目前通常生物学实验室需要高加速度加载装置。目的:结合现有离心机,设计制作大鼠高加速度离心加载机,研究大鼠在高加速度力学环境下的力学生物学响应。方法:离心机设计制作流程:确定设计参数、选择动力源→设计离心机结构并验证→选择制作控制器→加工制作机器并调试。对大鼠进行水平和竖直放置方向的加载,每个方向设置了4 G组、8 G组、10 G组、20 G组4个小组和一个对照组,观察不同高加速度环境对大鼠身体和行走能力的影响。结果与结论:①经过结构设计加工、配件选型和安装调试研制出高加速度加载机,设备包括机械结构与控制系统两部分;该机运行平稳,噪声低,平稳实现0-40 G的高加速度加载,并且还可实现变加速度加载;②采用该机对大鼠进行不同高加速度环境加载后,表现出身体向一侧倾斜,不能直线行走的现象,并且伴随战栗、后肢充血等症状,高加速度值越大,大鼠所受的影响越大,经过一段时间休息,大鼠身体基本可以恢复;③实验结果验证了该离心加载机可以为动物实验提供相应的高加速度环境,可以用于研究高加速度环境下动物的力学生物学响应。
        BACKGROUND: Manned spacecraft launches and returns, and shipboard aircraft takes off and landing, will expose astronauts and pilots to high acceleration environment. High acceleration environment has an important impact on cells, organs, and bodies. The high acceleration centrifuge is a device that can provide high acceleration environment for cells and animals. It plays a role of basic platform in the study on mechanics biology and tissue engineering, especially biological laboratory. OBJECTIVE: To design a centrifuge for high acceleration loading in rats based on a centrifuge and to study the mechanobiological responses of rats in a high-acceleration environment. METHODS: Design process of centrifuge was as follows: determine parameters and select motor → design and validate of the centrifuge → select controller → manufacture and commission machine. Rats were loaded horizontally and vertically. Four groups including 4 G group, 8 G group, 10 G group and 20 G group and one control group were set up. The effects of different high acceleration environments on the physical condition and walking ability of rats were detected. RESULTS AND CONCLUSION: We designed and manufactured the centrifuge, and it included two parts: mechanical structure and control system. The machine run smoothly and had no noise, and could provide 0-40 G high acceleration environment and variable acceleration environment. After rats were subjected to different high acceleration loads, their bodies were inclined to one side and could not walk in a straight line, and accompanied by trembling, hindlimb congestion and other symptoms. The higher the high acceleration value, the greater the influence on rats. After a period of rest, the body could basically recover. Our test suggests that the centrifuge can provide a high acceleration environment for animal experiments, which can be used to study the mechanobiological responses of animals in high acceleration environment.
引文
[1]Park M,Yoo S,Seol H,et al.Unpredictability of fighter pilots'g duration tolerance by anthropometric and physiological characteristics.Aerosp Med Hum Perform.2015;86(4):397-401.
    [2]Park J, Yun C, Kang S. Physical Condition Does Not Affect Gravity-Induced Loss of Consciousness during Human Centrifuge Training in Wel-Experienced Young Aviators.Plos One.2016; 11(1):e0147921.
    [3]Nishida Y,Maruyama S,Shouji I,et al.Effects and biological limitations of+Gz acceleration on the autonomic functions-related circulation in rats.J Physiol Sci.2016;66(6):447-462..
    [4]Gould RK. Syncope as the first sign of complete heart block in a military aviator.Aviat Space Environ Med.2010;81(4):431-432.
    [5]Honkanen T,Oksa J,M?ntysaari MJ,et al.Neck and Shoulder Muscle Activation Among Experienced and Inexperienced Pilots in+Gz Exposure. Aerosp Med Hum Perform.2017;88(2):90-95.
    [6]马爱军,黄晓慧.载人航天环境模拟技术的发展[J].航天医学与医学工程,2008,21(3):224-232.
    [7]张选斌,唐勇,岳洪梅.±Gx加速度对航母舰载机飞行员的影响及防护对策[J].人民军医, 2013(10):1124-1125.
    [8]Kang KW, Shin YH, Kang S. Acute spinal injury after centrifuge training in asymptomatic fighter pilots. Aerosp Med Hum Perform.2015;86(4):386-391.
    [9]Arvedsen SK,Eiken O,K?leg?rd R,et al.Body height and arterial pressure in seated and supine young males during+2 G centrifugation.Am J Physiol Regul Integr Comp Physiol. 2015;309(9):R1172-1177.
    [10]宋新亮,顾绍江,周娅蕾,等.短臂离心机不同转速暴露时躯体重力错觉及前庭自主神经反应对比[J].航天医学与医学工程, 2017,30(2):88-91.
    [11]Park J, Lee GH, Park JY, et al.Hypergravity-induced multicellular spheroid generation with different morphological patterns precisely controlled on a centrifugal microfluidic platform. Biofabrication.2017;9(4):045006.
    [12]Sukhoterin AF,Pashchenko PS.Effects of+Gz Loads on Structural Organization of Central Autonomic Nuclei.Bull Exp Biol Med. 2015;159(5):670-674.
    [13]Ning LN, Lei XH, Cao YJ,et al.Effect of Short-Term Hypergravity Treatment on Mouse 2-Cell Embryo Development. Microgravity Science Technology.2015;27(6):465-471.
    [14]胡深,张洪义,李新慧,等.超高正加速度重复持续性暴露加重对大鼠肝细胞超微结构的损伤[J].中国医刊,2015,50(2):45-49.
    [15]Kim HS,Jung YY,Do SI.Hepatic inducible nitric oxide synthase expression increases upon exposure to hypergravity.Braz J Med Biol Res.2014;47(11):940-946.
    [16]Shi B,Feng ZQ,i WB,t al.Low G preconditioning reduces liver injury induced by high+Gz exposure in rats[J].世界胃肠病学杂志:英文版(电子版).2015;21(21):6543-6549.
    [17]Jang Y,Jung H,Ju JH.Chondrogenic Differentiation Induction of Adipose-derived Stem Cells by Centrifugal Gravity.J Vis Exp.2017;(120).
    [18]Zhang M,Ishikawa S,Inagawa T,et al.Influence of Mechanical Force on Bone Matrix Proteins in Ovariectomised Mice and Osteoblast-like MC3T3-E1 Cells.Vivo.2017;31(1):87-95.
    [19]牛忠英,吴斌,张建中,等.高+Gx过载对猴肾脏组织病理学的影响[J].解放军医学杂志,2005, 30(2):147-148.
    [20]吴斌,刘兴华,阚广捍,等.高+Gx作用对猴肺脏的病理学影响[J].航天医学与医学工程,2004, 17(6):397-401.
    [21]Shuai Z,Yan Z,Sun Z,et al.Effects of Hypergravity on Osteopontin Expression in Osteoblasts. Plos One.2015;10(6):e0128846.
    [22]Costaalmeida R,Carvalho DT,Ferreira MJ,et al.Effects of hypergravity on the angiogenic potential of endothelial cells. J R Soc Interface.2016;13(124). pii:20160688..
    [23]Prodanov L,van Loon JJ,Te RJ,et al.Substrate nanotexture and hypergravity through centrifugation enhance initial osteoblastogenesis.Tissue Engineering Part A.2013; 19(1-2):114.
    [24]Morita H,Obata K,Abe C,et al.Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments. Plos One.2015;10(7):e0133981.
    [25]Tverskoi AV,Morozov VN,Petrenko AA,et al. Morphological characteristics of the rats brain under hypergravity.Drug Invention Today.2017;9(3):30-32.
    [26]Junichi T, Akira I, Momoko N, et al.Intermittent application of hypergravity by centrifugation attenuates disruption of rat gait induced by 2 weeks of simulated microgravity.Behav Brain Res.2015;287:276-284.
    [27]葛洪玉,张春秋,高丽兰,等.针对细胞高加速度离心式加载机的研制[J].中国组织工程研究,2015,19(45):7350-7355.
    [28]黎启胜,许元恒,罗龙.科学试验用离心机发展综述[J].装备环境工程,2015,12(5):1-10.
    [29]汪振威.离心分离设备及离心机发展趋势[J].黑龙江科技信息,2016,(9):57.
    [30]Frett T, Mayrhofer M, Schwandtner J, et al. An Innovative Short Arm Centrifuge for Future Studies on the Effects of Artificial Gravity on the Human Body.Microgravity Science Technology.2014; 26(4):249-255.
    [31]Zorana Dan?uo. On Mechanics of a High‐G Human Centrifuge.Pamm. 2013;13(1):39-40.
    [32]陈侃,景凤,关仁,等.轨道用橡胶扣件Mooney-Rivlin模型参数确定及压缩变形的有限元模拟[J].机械工程材料, 2016,40(4):89-92.
    [33]任贵东,田春林,张鹏,等.布线机器人工作台基于有限元模态分析[J].机械工程师, 2016,(12):82-84.
    [34]常颖,李聪,张风波.离心机转子力学性能的有限元分析及测试[J].化工机械,2012,39(4):478-481.
    [35]常颖,李聪,张风波.基于有限元法的离心机转子系统模态分析[J].现代仪器与医疗,2011,17(3):63-65.
    [36]王凯坡,方春伟,孙广斌,等.基于ABAQUS卧式螺旋离心机转鼓系的模态分析[J].石化技术,2016, 23(6):3-4.
    [37]毛文贵,李建华,傅彩明,等.基于模态分析的转鼓优化设计[J].机械设计,2010,27(6):71-74.
    [38]徐立强,朱凌云,胡志胜.基于Abaqus的发电机支架模态分析[J].汽车制造业,2012,10:58-59.
    [39]贾普照.稳态加速度模拟试验设备[M].北京:国防工业出版社,2013.
    [40]徐艳,张立辉,耿喜臣,等.新型载人离心机在军事航空医学中的应用[J].中华航空航天医学杂志,2010, 21(1):36-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700