基于惰性强度的光纤传像模块支撑结构优化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimum design of braced structure for optical fiber image transmission module based on inert strength
  • 作者:杨丰福 ; 田海英 ; 颜昌翔 ; 吴从均 ; 母德强
  • 英文作者:Yang Fengfu;Tian Haiying;Yan Changxiang;Wu Congjun;Mu Deqiang;Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences;University of Chinese Academy of Sciences;School of Mechatronic Engineering, Changchun University of Technology;
  • 关键词:光纤传像模块 ; 应力失效 ; 惰性强度 ; 结构优化
  • 英文关键词:optical fiber image transmission module;;stress failure;;inert strength;;structure optimization
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:中国科学院长春光学精密机械与物理研究所;中国科学院大学;长春工业大学机电工程学院;
  • 出版日期:2019-01-28 09:44
  • 出版单位:红外与激光工程
  • 年:2019
  • 期:v.48;No.295
  • 基金:国家重点研发计划(2016YFF0103603)
  • 语种:中文;
  • 页:HWYJ201905035
  • 页数:9
  • CN:05
  • ISSN:12-1261/TN
  • 分类号:251-259
摘要
光纤传像模块是大视场天基望远镜关键部件之一,其支撑结构的刚度特性对于物镜的工作寿命有至关重要的影响。为了在振动载荷作用下,在保证物镜寿命的同时降低支撑结构的重量,在拓扑优化的基础上,以光学玻璃惰性强度和结构基频为优化约束对光纤传像模块支撑结构进行了优化。首先,阐述了光学元件惰性强度的计算方法并确定了优化过程中耦合光纤的同心物镜惰性强度的边界值;其次,根据系统参数确定了光纤束的布局并设计了初始支撑结构;最后,在拓扑优化的基础上,建立了以耦合光纤的同心物镜惰性强度和支撑结构基频为优化约束的集成优化模型,并利用isight集成优化平台进行了计算。计算结果表明:在满足优化约束的情况下,优化后的质量降低了11.4%,取得了明显的减重效果。提出的优化方法为物镜与光纤束耦合类的光机结构设计提供了参考。
        Optical fiber image module is one of the key components of large field of view space-based telescope, whose stiffness characteristics of support structure have a crucial impact on the working life of objective lens. In order to ensure the lifetime of objective lens and reduce the weight of the support structure of the optical fiber image transmission module under vibration load, the braced structure of the optical fiber image transmission module was optimized with the inert strength of optical glass and the fundamental frequency of the structure as the optimization constraints on the basis of topological optimization. Firstly, the calculation method of inert strength of optical element was described and the inert strength boundary value of the coupled-fiber monocentric lens was determined. Secondly, the initial braced structure of the optical fiber image transmission module was designed. Finally, on the basis of topology optimization, an integrated optimization model was established with the inertia strength of the monocentric lens and the fundamental frequency of the braced structure as the optimization constraints,and was calculated by using i SIGHT integrated optimization platform. The numerical result of the simulation demonstrates that under the condition of satisfying the optimization constraint, the quality of the optimized support structure is reduced by 11.4%, achieving the obvious weight loss effect. The proposed optimization method provides a reference for the opto-mechanical structure of objective lens coupled with the optical fiber bundle.
引文
[1] Gu Zhiyuan, Yan Changxiang, Zhang Junqiang, et al.Space surveillance telescope with large field of view and high resolution based on monocentric lens[C]//Sysmposium of the Second Space Object and Debris Monitroing, Cleanup Technology and Applications,2015.(in Chinese)顾志远,颜昌翔,张军强,等.基于同心物镜结构的超大视场高分辨率空间监视望远镜[C]//第二届空间目标与碎片监测、清理技术及应用学术研讨会论文集, 2015.
    [2] Cao Yuyan, Wang Zhichen, Zhou Chao, et al. General modeling and optimal design of flexure supporting structure for optical components[J]. Optics and Precision Engineering, 2016, 24(11):2792-2803.(in Chinese)曹玉岩,王志臣,周超,等.光学元件挠性支撑结构广义建模及优化设计[J].光学精密工程, 2016, 24(11):2792-2803.
    [3] Hu Rui. Topology optimization-based design method of space mirror and flexible support structure[D]. Dalian:Dalian University of Technology, 2017.(in Chinese)胡瑞.基于拓扑优化的空间反射镜与柔性支撑结构设计方法[D].大连:大连理工大学, 2017.
    [4] Joeleff Fitzsimmons, Alexis Hill. Design and analysis of a large-diameter precision optical mount for NFIRAOS[C]//Proc SPIE, 2014, 9147:91478U.
    [5] Isaac Weingrod, Chou Catherine Y, Buck Holmes, et al.Design of bipod flexure mounts for the IRIS Spectrometer[C]//Proc SPIE, 2013, 8836:8836Q.
    [6] Johnson A R, Pessin J, Ford J E, et al. Optomechanical design with wide field of view fiber-coupled image systems[C]//OSA Frontiers in Optics Meeting, 2014.
    [7] Greivenkamp John E. Field Guide to Opto-mechanical Design and Analysis[M]. USA:SPIE Press, 2012.
    [8] Xiong Changxin, Li Qiantao. Strength design approaches to optical glass[J]. Optics&Optoelectronic Technology, 2006, 4(5):115-118.(in Chinese)熊长新,李钱陶.光学玻璃的强度设计方法[J].光学与光电技术, 2006, 4(5):115-118.
    [9] Zhu Bofang. The Finite Element Method Theory and Applications[M]. Beijing:China Water&Power Press,2009.(in Chinese)朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社, 2009.
    [10] Doyle K B, Genberg V L, Michels G J. Integrated Optomechanical Analysis[M]. USA:SPIE Press, 2002.
    [11] Fuller E R, Freiman S W, Quinn J B, et al. Fracure mechanics approach to the design fo glass aircraft windows:a case study[C]//Proc SPIE, 1994, 2286:419-430.
    [12] Yu Daoyin, Tan Hengying. Engineering Optics[M].Beijing:China Machine Press, 2011.(in Chinese)郁道银,谈恒英.工程光学[M].北京:机械工业出版社,2011.
    [13] Yi Rongying. Crack growth behavior of glass materials under vibration conditions by numerical simulation and experiment[D]. Harbin:Harbin Institute of Technology,2010.(in Chinese)尹荣颖.振动条件下玻璃材料裂纹扩展行为的数值模拟及实验研究[D].哈尔滨:哈尔滨工业大学, 2010.
    [14] Hong Qingquan, Zhao Kang, Zhang Pan. Theoretical Foundation and Engineering Applications of OptiStruct&HyperStudy[M]. Beijing:China Machine Press,2018.(in Chinese)洪清泉,赵康,张攀. OptiStruct&HyperStudy理论基础与工程应用[M].北京:机械工业出版社, 2018.
    [15] Yang Shuai, Sha Wei, Chen Changzheng, et al. Design and optimization of carbon fiber framework for space camera[J]. Optics and Precision Engineering, 2017, 25(3):697-704.(in Chinese)杨帅,沙魏,陈长征,等.空间相机碳纤维框架的设计与优化[J].光学精密工程, 2017, 25(3):697-704.
    [16] Jiang Xin, Fang Liqiao, Li Ming. Detailed Explanation of Isight Application Cases and Parameterization Theory[M]. Beijing:Beihang University Press, 2012.(in Chinese)姜欣,方立桥,李明. Isight参数化理论与实例详解[M].北京:北京航空航天大学出版社, 2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700