秋茄幼苗光合特性对寒害的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Responses of Leaf Photosynthetic Characteristics of Kandelia obovata Seedlings to Chilling
  • 作者:郭菊兰 ; 朱耀军 ; 文菀玉 ; 武高洁 ; 宁宇 ; 马骅 ; 王义飞
  • 英文作者:GUO Ju-lan;ZHU Yao-jun;WEN Wan-yu;WU Gao-jie;NING Yu;MA Hua;WANG Yi-fei;Institute of Wetland Research,Chinese Academy of Forestry,Beijing Key Laboratory of Wetland Services and Restoration;
  • 关键词:秋茄幼苗 ; 低温胁迫 ; 光合特征 ; 荧光特征
  • 英文关键词:Kandelia obovata seedlings;;low-temperature stress;;photosynthetic characteristics;;fluorescent characteristics
  • 中文刊名:LYKX
  • 英文刊名:Forest Research
  • 机构:中国林业科学研究院湿地研究所湿地生态功能与恢复北京市重点实验室;
  • 出版日期:2018-12-15
  • 出版单位:林业科学研究
  • 年:2018
  • 期:v.31
  • 基金:国家林业公益性行业科研专项:红树林寒害及富营养化监测预警与灾害评价(201504419);清澜港红树林土壤N2O通量排放特征(CAFYBB2016SY033)
  • 语种:中文;
  • 页:LYKX201806010
  • 页数:6
  • CN:06
  • ISSN:11-1221/S
  • 分类号:66-71
摘要
[目的]研究低温胁迫对秋茄幼苗光合作用和叶绿素荧光参数的影响及秋茄幼苗对低温胁迫的防御机制,以期为抗寒性红树植物种的选育、引种提供参考。[方法]以秋茄幼苗为材料,分别在5℃与12℃低温下进行胁迫试验。应用Li-6400XT便携式光合作用测定仪和便携式脉冲调制叶绿素荧光仪(PAM-2500)分别测定光合参数与叶绿素荧光参数的变化,应用EXCEL和SPSS13. 0软件进行数据整理、作图及统计分析。[结果]表明:(1)低温胁迫对秋茄幼苗的光合速率(Pn)、胞间CO2浓度(Ci)、气孔导度(Gs)及水分利用率(WUE)影响显著(P <0. 05);(2)低温胁迫下,Pn、Gs、Ci均显著降低,持续5 d低温,Pn、Gs随低温时间的延长持续下降,Ci则呈现上升趋势。5℃低温胁迫第1天,WUE明显高于对照(CK),第2天之后开始下降且低于对照(CK); 12℃低温胁迫下,WUE略高于CK且低温期内持续高于CK。(3) 5℃低温胁迫下,可变荧光(Fv)与最大光能转换速率(Fv/Fm)低于CK,随低温时间的延长呈现下降趋势,在低温第5天,显著低于CK(P <0. 05); 12℃低温胁迫下,Fv和Fv/Fm变化不明显。[结论]秋茄幼苗可在12℃低温胁迫下存活,但秋茄幼苗的形态生长和生物产量减少,而5℃低温胁迫持续2 d是秋茄幼苗的生存阈值;秋茄幼苗叶片在未使光系统Ⅱ(PSⅡ)潜在活性中心受损的低温胁迫下,Pn下降主要受气孔因子限制,在光合作用过程中,通过提高叶片水分利用率,以减少光合速率下降,提高抗寒能力。
        [Objective] To investigate the effects of chilling on leaf photosynthesis and chlorophyll fluorescence parameters in mangrove Kandelia obovata seedlings,and the defense mechanism of K. obovata seedlings against chilling,so as to provide references for the breeding and introduction of the cold-resistant mangrove species. [Method]Under low-temperature stress at 5℃ and 12℃,the changes of leaf photosynthetic parameters and chlorophyll fluorescence parameters of K. obovata seedlings were measured using portable photosynthesis analyzer( Li-6400 XT)and portable pulse modulated chlorophyll fluorescence instrument( PAM-2500),respectively. Data processing,mapping and statistical analysis were carried out using the software EXCEL and SPSS13. 0. [Result]( 1) The leaf photosynthetic rate( Pn),intercellular CO2 concentration( Ci),stomatal conductance( Gs) and water use efficiency( WUE) of K. obovata seedlings were significantly affected by low temperature stress( P < 0. 05).( 2) At low temperature,the values of Pn,Gs and Ci decreased significantly,and the values of Pn and Gs showed a decreasingtrend during 5 days of low temperature while the Ci showed a rising trend. Under the low-temperature stress at 5℃,the value of WUE was higher than CK at the first day,and then decreased to lower than CK. At 12℃,WUE was a little higher than CK during all the 5 days.( 3) At 5℃,the variable fluorescence( Fv) and the maximum light energy conversion rate( Fv/Fm) were lower than CK,and showed a downward trend with the time duration of low temperature,and decreased significantly at low temperature at the fifth day( P < 0. 05). At 12℃,the changes of Fv and Fv/Fm values were not significant. [Conclusion] K. obovata seedling can survive under low-temperature stress at 12℃,and the growth and biomass of K. obovata seedlings will decrease. At the low temperature of 5℃,the survival threshold of K. obovata seedlings is 2 days( 48 h). Under low-temperature stress which does not damage the potential activities of leaf Photosystem II( PSII) in K. obovata seedlings,the declining of Pn is mainly because of the restricted stomatal efficiency( WUE). During the process of photosynthesis,K. obovata seedlings will lower the declining of photosynthetic rate through increasing the leaf water use to improve its cold-resistance ability.
引文
[1]郭菊兰,朱耀军,武高洁,等.海南省清澜港红树林湿地健康评价[J].林业科学,2015,51(10):17-25.
    [2]Mc Millan C. Environmental factors affecting seedling establishment of the black mangrove on the central Texas coast[J]. Ecology,1971,52(5):927-930.
    [3]杨盛昌,林鹏.潮滩红树植物抗低温适应的生态学研究[J].植物生态学报,1998,22(1):60-67.
    [4]池伟,陈少波,仇建标,等.红树林在低温胁迫下的生态适应性[J].福建林业科技,2008,35(4):146-148.
    [5]陈鹭真,王文卿,张宜辉,等. 2008年南方低温对我国红树植物的破坏作用[J].植物生态学报,2010,34(2):186-194.
    [6]李玫,廖宝文,管伟,等.广东省红树林寒害的调查[J].防护林科技,2009,89(2):29-31.
    [7]杨盛昌,李云波,林鹏.冷胁迫下红树植物白骨壤和桐花树叶片热值的变化[J].台湾海峡,2003,22(1):46-56.
    [8]雍石泉,仝川,庄晨辉,等. 2010年冬季寒冷天气对闽江口3种红树植物幼苗的影响[J].生态学报,2011,31(24):7542-7550.
    [9]郑春芳,刘伟成,陈少波,等.短期夜间低温胁迫对秋茄幼苗碳氮代谢及其相关酶活性的影响[J].生态学报,2013,33(21):6853-6862.
    [10]倪霞,曹永慧,周本智,等.干旱处理对毛竹光响应的影响:基于4种模型比较分析[J].林业科学研究,2017,30(3):465-471.
    [11]刁俊明,曾宪录,陈桂珠.干旱胁迫对桐花树生长和生理指标的影响[J].林业科学研究,2014,27(3):423-428.
    [12]刘娟娟,李吉跃,张建国.高CO2浓度和干旱胁迫对4种树苗光合特性的影响[J].林业科学研究,2015,28(3):339-345.
    [13]曹庆平,赵平,倪广艳,等.华南荷木林冠层气孔导度对水汽压亏缺的响应[J].生态学杂志,2013,32(7):1770-1779.
    [14]Richards R A,Rebetzke G J,Condon A G,et al. Breeding Opportunities for increasing the Efficiency of Water Use and Crop Yield in Temperate Cereals[J]. Crop Science,2002,42(1):111-121.
    [15]李文华,刘广权,马松涛,等.干旱胁迫对苗木蒸腾耗水和生长的影响[J].西北农林科技大学学报:自然科学版,2004,32(1):61-65.
    [16]杨猛,魏玲,胡萌,等.低温胁迫对玉米幼苗光合特性的影响[J].东北农业大学学报,2012,43(1):71-76.
    [17] Bilska A,Sowinski P. Closure of plasmodesmata in maize(Zea mays)at low temperature:a new mechanism for inhibition of photosynthesis[J]. Annals of Botany,2010,106:675-686.
    [18]黄绢,陈存,张伟溪,等.干旱胁迫对转JERF36银中杨苗木叶片解剖结构及光合特性的影响[J].林业科学,2017,53(5):8-15.
    [19]安海龙,谢乾瑾,刘超,等.水分胁迫和种源对黄柳叶功能性状的影响[J].林业科学,2015,51(10):75-84.
    [20]Sharp R E,Poroyko V,Hejlek L G. Root growth maintenance during water deficits:physiology to functional genomies[J]. J Exp Bot,2004,55(407):2343-2351.
    [21]曹生奎,冯起,司建华,等.植物叶片水分利用效率研究综述[J].生态学报,2009,29(7):3883-3892.
    [22]陈思思,李春燕,杨景,等.拔节期低温冻害对扬麦16光合特性及产量形成的影响[J].扬州大学学报:农业与生命科学版,2014,35(3):59-64.
    [23] Ellsworth D S,Thomas R,Crous K Y,et al. Elevated CO2affects photosynthetic responses in canopy pine and subcanopy deciduous trees over10 years[J]. Global Change Biology,2012,18(1):223-242.
    [24]Farquhar G D,Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology,1982,33(1):317-345.
    [25]张志刚,尚庆茂.低温、弱光及盐胁迫下辣椒叶片的光合特性[J].中国农业科学,2010,43(1):123-131.
    [26]朱新广,王强,张其德.冬小麦光合功能对盐胁迫的响应[J].植物营养与肥料学报,2002,8(2):177-180.
    [27]井大炜,刑尚军,马海林,等.Ⅰ-107欧美杨对不同强度干旱胁迫的形态与生理响应[J].东北林业大学学报,2014,42(1):10-13.
    [28]李敦海,宋立荣,刘永定.念珠藻葛仙米叶绿素荧光与水分胁迫的关系[J].植物生理学通讯,2000,36(3):205-208.
    [29]王林龙,李清河,徐军,等.不同种源油蒿形态与生理特征对干旱胁迫的响应[J].林业科学,2015,51(2):37-43.
    [30] Anjum S A,Xie X,Wang L C,et al. Morphological,physiological and biochemical responses of plants to drought stress[J]. African Journal of Agricultural Research,2011,6(9):2026-2032.
    [31]Gimenez C,Mitchell V G,Lawlor D W. Regulation of photosynthetic rate of two sunflower hybrids underwater stress[J]. Plant Physiology,1992,98(2):516-524.
    [32]Downton W J S,Loveys B R,Grant W J R. Stomatal closure fully accounts for the inhibition of photosynthesis by abscises acid[J].New Phytologist,2010,108(2):263-266.
    [33]Lange O L,Nobel P S,Osmond C B,et al. Water relations and carbon assimilation[M]//Encyclopedia Plant Physiology. Berlin Heidelberg:Springer,1982:589-613.
    [34]El-Sharkawy M A,Cock J H,Held K A A. Water use efficiency of Cassava II. Differing sensitivity of stomata to air humidity and other warm-climate species[J]. Crop Sci,1984,24(3):503-507.
    [35]Lange O L,Nobel P S,Osmond C B,et al. Water relations and carbon assimilation[M]//Encyclopedia Plant Physiology. Berlin Heidelberg:Springer,1982:5-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700