黄淮海夏玉米区玉米籽粒带菌检测分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Detection and Analysis of Fungi Carried by Maize Grain in Huang-Huai-Hai Summer Maize Region
  • 作者:金柳艳 ; 郭宁 ; 石洁 ; 张海剑 ; 刘树森 ; 张家齐
  • 英文作者:JIN LiuYan;GUO Ning;SHI Jie;ZHANG HaiJian;LIU ShuSen;ZHANG JiaQi;Plant Protection Institute, Hebei Academy of Agriculture and Forestry Science;
  • 关键词:玉米籽粒 ; 真菌检测 ; 分离频率 ; 黄淮海夏玉米区
  • 英文关键词:maize grain;;fungi detection;;isolation frequency;;Huang-Huai-Hai summer maize region
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:河北省农林科学院植物保护研究所;
  • 出版日期:2018-09-16
  • 出版单位:中国农业科学
  • 年:2018
  • 期:v.51
  • 基金:国家现代农业(玉米)产业技术体系(CARS-02)
  • 语种:中文;
  • 页:ZNYK201818007
  • 页数:12
  • CN:18
  • ISSN:11-1328/S
  • 分类号:79-90
摘要
【目的】明确黄淮海夏玉米区玉米籽粒带菌量,为玉米安全生产、储藏加工以及检疫提供参考依据。【方法】分别于玉米乳熟期及完熟期,采集黄淮海夏玉米区4个省(河北、河南、山东、安徽)90个市/县的玉米果穗,每个市/县采集表面未发生病症且果穗饱满的玉米穗4个,共采集720个样本。对所有样本进行籽粒外部及内部带菌量及带菌种类的检测,外部检测采用洗涤检测法,通过统计菌落总数与稀释倍数,计算籽粒表面的孢子负荷量及分离到的各菌属的分离比例;内部检测采用PDA平板法,对籽粒外部检测过的10个籽粒消毒后置于PDA平板上进行培养,统计每个籽粒带菌情况,计算籽粒带菌率及各菌属的分离频率。并且对籽粒内部分离频率较大的菌群进行形态学和分子鉴定。【结果】供试样本带菌量较大,乳熟期籽粒孢子负荷量在0—1 886个/粒,均值为439个/粒,籽粒带菌率在0—65.0%,均值为23.6%;完熟期籽粒孢子负荷量在18—2 658个/粒,均值为942个/粒,籽粒带菌率在10.0%—100.0%,均值为59.6%。完熟期带菌量大于乳熟期,但部分地区乳熟期带菌量仍较大。不同地区玉米籽粒带菌量存在差异,河南省的玉米籽粒带菌量较大,安徽省带菌量最少,河北省与山东省居中且差异不明显。玉米籽粒内部以及外部均携带的真菌类群有镰孢菌(Fusarium spp.)、青霉菌(Penicillium spp.)、曲霉菌(Aspergillus spp.)、链格孢菌(Alternaria spp.)、木霉菌(Trichoderma spp.)、根霉菌(Rhizopus spp.)、蠕孢菌(Hel-minthosporium spp.)、毛霉菌(Mucor spp.)。乳熟期籽粒外部和内部镰孢菌的分离比例分别为59.1%和36.1%,说明玉米在乳熟期时即有大量镰孢菌侵入;籽粒外部青霉菌和曲霉菌的分离比例分别为8.9%与0.7%,籽粒内部的分离频率分别为6.0%与1.9%,说明乳熟期青霉菌与曲霉菌也已经开始侵染玉米果穗。完熟期籽粒外部与内部镰孢菌的分离比例分别为71.9%和58.5%,籽粒外部青霉菌和曲霉菌的分离比例分别为17.0%和0.9%,籽粒内部分离频率分别为9.3%和2.6%,说明镰孢菌、青霉菌、曲霉菌为本研究黄淮海夏玉米区玉米籽粒携带的主要真菌。形态与分子鉴定结果显示,镰孢菌属中轮枝镰孢(F.verticillioides)的分离频率为29.7%,层出镰孢(F.proliferatum)的分离频率为25.9%,禾谷镰孢(F.graminearum)的分离频率为1.3%,表明轮枝镰孢为优势菌;青霉菌主要分离到绳状青霉(P.funiculosum)和草酸青霉(P.oxalicum),分离频率分别为5.0%和3.6%;曲霉菌主要为黄曲霉(A.flavus)和黑曲霉(A.niger),分离频率分别为1.4%和1.2%。【结论】表面无症状的玉米籽粒在乳熟期及完熟期均携带大量病原菌,且完熟期带菌量大于乳熟期;镰孢菌在黄淮海夏玉米区的分离频率最大,轮枝镰孢为当地玉米籽粒携带的优势真菌
        【Objective】 The objective of this study is to determine the amount of fungi carried in maize grains in Huang-Huai-Hai summer maize region, and to provide reference for safe production, storage, processing and quarantine of maize. 【Method】A total of 720 maize ears were collected at the stages of milk-ripening and full-ripening in 90 cities or counties in 4 provinces(Hebei, Henan, Shandong, Anhui) of the Huang-Huai-Hai summer maize region, 4 full maize ears with no symptom on the surface were sampled in each city or county. All samples were tested for the amount and species of fungi carried, including external and internal tests of maize grains. Washing detection method was used to calculate the spores load on the grain surface, the spore load on the grain surface and isolation rate of each genus were calculated by counting the total number of colonies and dilution multiple. The PDA plate method was used for internal detection. Ten grains tested externally were sterilized and cultured on PDA plate. The fungi carrying rate of grains and the isolation frequency of each genus of fungi were calculated by counting the fungi carrying rate of each grain. In addition, the morphological and molecular identification of the higher frequency fungi were carried out. 【Result】The samples carried a large number of fungi. The spores load of the tested samples ranged from 0 to 1 886 per grain, with an average of 439 spores per grain at milk-ripening stage, the fungi-carrying rate of grains ranged from 0 to 65.0%, with an average of 23.6%. The spores load ranged from 18 to 2 658 per grain, with an average of 942 spores per grain at full-ripening stage, the fungi-carrying rate of grains ranged from 10.0% to 100.0%, with an average of 59.6%. The amount of fungi carried in full-ripening stage was higher than that in milk-ripening stage, but in some areas, the amount of fungi carried was still large in milk-ripening stage. There were differences in the amount of fungi carried in maize grains in different areas. The amount of fungi carried in maize grains in Henan Province was the largest, and Anhui Province had the least amount of fungi, Hebei Province and Shandong Province were in the middle and the difference was not significant. Fungal communities carried both inside and outside of maize grains included Fusarium spp., Penicillium spp., Aspergillus spp., Alternaria spp., Trichoderma spp., Rhizopus spp., Hel-minthosporium spp., Mucor spp. The isolation rate of Fusarium spp. in the grain external and internal detection was 59.1% and 36.1% respectively at milk-ripening stage, indicating that a large number of Fusarium spp. occurred at milk-ripening stage of maize. The isolation rate of Penicillium spp. and Aspergillus spp. in external grains was 8.9% and 0.7% respectively, and the isolation frequency in internal grains was 6.0% and 1.9% respectively, indicating that Penicillium spp. and Aspergillus spp. had begun to infect maize ear at milk-ripening stage. The isolation rate of Fusarium spp. in the grain external and internal detection was 71.9% and 58.5% respectively at full-ripening stage, the isolation rate of Penicillium spp. and Aspergillus spp. in external grains was 17.0% and 0.9% respectively, and the isolation frequency in internal grains was 9.3% and 2.6% respectively, indicating that Fusarium spp., Penicillium spp. and Aspergillus spp. were the main fungi carried by maize grains in Huang-Huai-Hai summer maize region. Morphological and molecular identification results showed that F. verticillioides was the dominant strain in Fusarium spp., the isolation frequency of F. verticillioides, F. proliferatum, F. graminearum was 29.7%, 25.9%, 1.3%, respectively. P. funiculosum and P. oxalicum were the dominant strains in Penicillium spp., and the isolation frequency was 5.0% and 3.6%, respectively. A. flavus and A. niger were the dominant strains in Aspergillus spp., and the isolation frequency was 1.4% and 1.2%, respectively. 【Conclusion】 The maize grains with no surface symptom carried a large number of fungi in both milk-ripening and full-ripening stages, and the amount of fungi carried in the full-ripening stage is higher than that in the milk-ripening stage. Fusarium spp. is the most frequently isolated fungi in Huang-Huai-Hai summer maize region and F. verticilliflora is the dominant strain. It is the dominant pathogen carried by local maize grains.
引文
[1]孙华,张海剑,马红霞,石洁,郭宁,陈丹,李坡.春玉米区穗腐病病原菌组成、分布及禾谷镰孢复合种的鉴定.植物病理学报,2018,48(1):8-15.SUN H,ZHANG H J,MA H X,SHI J,GUO N,CHEN D,LI P.Composition and distribution of pathogens causing ear rot in spring maize region and identification of Fusarium graminearum species complex.Acta Phytopathologica Sinica,2018,48(1):8-15.(in Chinese)
    [2]姚瑞丽.玉米穗腐病病原鉴定、产毒条件及田间防控研究[D].太谷:山西农业大学,2015.YAO R L.Study on identification,toxin production and field control of maize ear rot[D].Taigu:Shanxi Agricultural University,2015.(in Chinese)
    [3]肖淑芹,许佳宁,闫丽斌,隋韵涵,薛春生,陈捷.辽宁省玉米镰孢穗腐病病原菌的鉴定与分布.植物保护学报,2017,44(5):803-808.XIAO S Q,XU J N,YAN L B,SUI Y H,XUE C S,CHEN J.Identification and distribution of Fusarium species causing maize ear rot in Liaoning Province.Journal of Plant Protection,2017,44(5):803-808.(in Chinese)
    [4]段灿星,王晓鸣,宋凤景,孙素丽,周丹妮,朱振东.玉米抗穗腐病研究进展.中国农业科学,2015,48(11):2152-2164.DUAN C X,WANG X M,SONG F J,SUN S L,ZHOU D N,ZHU Z D.Advances in research on maize resistance to ear rot.Scientia Agricultura Sinica,2015,48(11):2152-2164.(in Chinese)
    [5]欧阳毅,祁智慧,李春元,张海洋,唐芳.玉米储藏真菌早期预测的研究.粮油食品科技,2017,25(5):52-55.OUYANG Y,QI Z H,LI C Y,ZHANG H Y,TANG F.Early prediction of fungus hazard during corn storage.Science and Technology of Cereals,Oils and Foods,2017,25(5):52-55.(in Chinese)
    [6]李慧,王若兰,渠琛玲,薛飞.玉米储藏过程发热霉变研究综述.食品工业,2017,38(8):188-191.LI H,WANG R L,QU C L,XUE F.Review on the fever and mildew of corn during storage.The Food Industry,2017,38(8):188-191.(in Chinese)
    [7]MARCO M O,MARCELO A R,GERóNIMO A V,GRACIELA C M.Diagnosis of mycotoxigenic fungi in stored grain corn.ECORFAN Journal,2015,1(1):37-47.
    [8]刘凤芝,李锋,王永丽.2017年上半年我国部分地区饲料及饲料原料中霉菌毒素的污染状况分析.粮食与饲料工业,2017(11):46-50.LIU F Z,LI F,WANG Y L.Investigation of mycotoxins contamination in feeds and feed ingredients in the first half of 2017 in some parts of China.Cereal and Feed Industry,2017(11):46-50.(in Chinese)
    [9]李昕,秦泽明,张维嘉,苏祥,刘建伟,郑雯,杨奕,温红玲,赵丽.2015年山东部分地区食用植物油中黄曲霉毒素B1和玉米赤霉烯酮污染状况调查.食品安全质量检测学报,2018,9(1):198-203.LI X,QIN Z M,ZHANG W J,SU X,LIU J W,ZHENG W,YANG Y,WEN H L,ZHAO L.Contaminations of aflatoxin B1 and zearalenone in edible oil in Shandong province in 2015.Journal of Food Safety and Quality,2018,9(1):198-203.(in Chinese)
    [10]周建川,郑文革,赵丽红,张天国,雷元培,计成.2016年中国饲料和原料中霉菌毒素污染调查报告.中国猪业,2017(6):22-26,32.ZHOU J C,ZHENG W G,ZHAO L H,ZHANG T G,LEI Y P,JI C.China feed and feed investigation of mycotoxin contamination in raw materials in 2016.China Swine Industry,2017(6):22-26,32.(in Chinese)
    [11]陈甫,朱风华,黄凯,王倩文,朱连勤.山东省肉鸡全价料及饲料原料中AFB1、FUMB1、DON和ZEN污染情况调查报告.中国畜牧杂志,2016,52(2):66-71.CHEN F,ZHU F H,HUANG K,WANG Q W,ZHU L Q.Investigation of AFB1,FUMB1,DON and ZEN contamination on broiler feeds and feed ingredients in Shandong Province.Chinese Journal of Animal Science,2016,52(2):66-71.(in Chinese)
    [12]刘少文,柏凡,李云,柏雪,程传民,方思敏,董艾青,樊淑娜.我国西南地区猪配合饲料中霉菌毒素污染状况——基于102家饲料生产企业样品调查.中国畜牧杂志,2015,51(12):62-67.LIU S W,BAI F,LI Y,BAI X,CHENG C M,FANG S M,DONG A Q,FAN S N.Mycotoxins contamination of pig feeds in Southwest China:Based on a survey about 102 feed enterprises.Chinese Journal of Animal Science,2015,51(12):62-67.(in Chinese)
    [13]邓惠中,贺建华.饲料中霉菌毒素检测技术研究进展.饲料工业,2010,31(7):48-50.DENG H Z,HE J H.Research progress of mycotoxin detection in feed.Feed Industry,2010,31(7):48-50.(in Chinese)
    [14]WIDSTROM N W,GUO B Z,WILSON D M.Integration of crop management and genetics for control of preharvest aflatoxin contamination of corn.Journal of Toxicology,2003,22(2/3):195-223.
    [15]MANNAA M,KIM K D.Control strategies for deleterious grain fungi and mycotoxin production from preharvest to postharvest stages of cereal crops:A review.Life Science and Natural Resources Research,2017,25:13-27.
    [16]MANNAA M,KIM K D.Influence of temperature and water activity on deleterious fungi and mycotoxin production during grain storage.Mycobiology,2017,45(4):240-254.
    [17]LACEY J.Pre-and post-harvest ecology of fungi causing spoilage of foods and other stored products.Journal of Applied Bacteriology Symposium Supplement,1989,67:11S-25S.
    [18]曲晓丽,徐秀德,董怀玉,王丽娟,姜钰,宋艳春,盖淑军.玉米子粒携带真菌种群多样性分析.玉米科学,2009,17(6):115-117.QU X L,XU X D,DONG H Y,WANG L J,JIANG Y,SONG Y C,GAI S J.Analysis of fungi species diversity on maize kernels.Journal of Maize Sciences,2009,17(6):115-117.(in Chinese)
    [19]郭聪聪,朱维芳,付萌,庞民好,刘颖超,董金皋.甘肃省玉米籽粒中镰孢菌分离频率及伏马毒素含量监测.植物保护学报,2015,42(6):942-948.GUO C C,ZHU W F,FU M,PANG M H,LIU Y C,DONG J G.Occurrence of Fusarium species and fumonisins associated with maize kernels from Gansu Province.Journal of Plant Protection,2015,42(6):942-948.(in Chinese)
    [20]罗晓杨,郭庆元,武小菲,王晓鸣,杨建国,谢爱婷.玉米生产品种种子带菌和镰孢菌毒素的检测.作物杂志,2009(3):75-79.LUO X Y,GUO Q Y,WU X F,WANG X M,YANG J G,XIE A T.Seed health testing and detection of Fusarium toxins in maize varieties.Crops,2009(3):75-79.(in Chinese)
    [21]胡晓芬,蒋孟多.玉米种子表面带菌检测的初步研究.甘肃科技,2017,33(16):139-140.HU X F,JIANG M D.Preliminary study on the detection of maize seed surface bacteria.Gansu Science and Technology,2017,33(16):139-140.(in Chinese)
    [22]蒋孟多,胡晓芬.玉米种子内部带菌检测的初步研究.农业科技与信息,2017(15):59-60.JIANG M D,HU X F.Preliminary study on the detection of internal bacteria in maize seeds.Agricultural Science-Technology and Information,2017(15):59-60.(in Chinese)
    [23]马奇祥,张进云,王胜亮,喻璋.玉米种子寄藏真菌的研究.河南农学院学报,1983(2):1-8.MA Q X,ZHANG J Y,WANG S L,YU Z.The study of fungi on the maize kernels.Journal of Henan Agricultural College,1983(2):1-8.(in Chinese)
    [24]陆家云.植物病原真菌学.北京:中国农业出版社,2001.LU J Y.Plant Pathogenic Mycology.Beijing:China Agriculture Press,2001.(in Chinese)
    [25]方中达.植病研究方法.3版.北京:中国农业出版社,2007.FANG Z D.Research Methods of Plant Disease.3rd ed.Beijing:China Agriculture Press,2007.(in Chinese)
    [26]GULLINO M L,MUNKVOLD G.Global Perspectives on the Health of Seeds and Plant Propagation Material.Springer Netherlands,2014,6:17-28.
    [27]杨硕,石洁,张海剑,郭宁,李坡,王振营.桃蛀螟为害夏玉米果穗对产量的影响.植物保护学报,2015,42(6):991-996.YANG S,SHI J,ZHANG H J,GUO N,LI P,WANG Z Y.Impacts of durian fruit borer Conogethes punctiferalis on yield loss of summer corn by injury corn ears.Journal of Plant Protection,2015,42(6):991-996.(in Chinese)
    [28]刘玥,李荣荣,何康来,白树雄,张天涛,丛斌,王振营.桃蛀螟为害对春玉米镰孢穗腐病发生及产量损失的影响.昆虫学报,2017,60(5):576-581.LIU Y,LI R R,HE K L,BAI S X,ZHANG T T,CONG B,WANG Z Y.Effects of Conogethes punctiferalis(Lepidopteran:Crambidae)infestation on the occurrence of Fusarium ear rot and the yield loss of spring corn.Acta Entomologica Sinica,2017,60(5):576-581.(in Chinese)
    [29]李夫沙,李玲莉,白亚东,董军忠.元江县曼来镇烟后套种玉米高产栽培技术.中国林副产品,2016(1):47-48.LI F S,LI L L,BAI Y D,DONG J Z.High yield cultivation techniques of maize after tobacco interplanting in Manlai town of Yuanjiang County.Forest by-Product and Speciality in China,2016(1):47-48.(in Chinese)
    [30]朱维芳.玉米籽粒中镰孢菌的分离及相互作用对产毒的影响[D].保定:河北农业大学,2014.ZHU W F.The isolation of Fusarium species and the effect of interaction between Fusarium species for mycotoxin accumulation[D].Baoding:Agricultural University of Hebei,2014.(in Chinese)
    [31]孙华,张海剑,郭宁,石洁,陈丹,马红霞.黄淮海夏玉米主产区穗腐病病原菌的分离鉴定.植物保护学报,2017,44(5):796-802.SUN H,ZHANG H J,GUO N,SHI J,CHEN D,MA H X.Isolation and identification of pathogens causing maize ear rot in Huang-Huai-Hai summer corn region.Journal of Plant Protection,2017,44(5):796-802.(in Chinese)
    [32]任旭.我国玉米穗腐病主要致病镰孢菌多样性研究[D].北京:中国农业科学院,2011.REN X.Diversity analyses of Fusarium spp.,the main causal agents of maize ear rot in China[D].Beijing:Chinese Academy of Agricultural Sciences,2011.(in Chinese)
    [33]马红霞,孙华,郭宁,张海剑,石洁,常佳迎.禾谷镰孢复合种毒素化学型及遗传多样性分析.中国农业科学,2018,51(1):82-95.MA H X,SUN H,GUO N,ZHANG H J,SHI J,CHANG J Y.Analysis of toxigenic chemotype and genetic diversity of the Fusarium graminearum species complex.Scientia Agricultura Sinica,2018,51(1):82-95.(in Chinese)
    [34]NELSON P E,PLATTNER R D,SHACKELFORD D D,DESJARDINS A E.Production of fumonisins by Fusarium moniliforme strains from various substrates and geographic areas.Applied and Environmental Microbiology,1991,57(8):2410-2412.
    [35]MISHRA H N,DAS C.A review on biological control and metabolism of aflatoxin.Critical Reviews in Food Science and Nutrition,2003,43(3):245-264.
    [36]ROBENS J F,RICHARD J L.Aflatoxins in animal and human health//Reviews of Environmental Contamination Toxicology.SpringerVerlag New York,Inc.,1992,127:69-94.
    [37]韩小敏,张宏元,张靖,徐文静,刘丹,江涛,徐进,李凤琴.中国94份玉米饲料原料中真菌及其毒素污染状况调查.中华预防医学杂志,2016,50(10):907-911.HAN X M,ZHANG H Y,ZHANG J,XU W J,LIU D,JIANG T,XU J,LI F Q.Survey on fungi contamination and natural occurrence of mycotoxins in 94 corn feed ingredients collected from China.Chinese Journal of Prevention Medicine,2016,50(10):907-911.(in Chinese)
    [38]刘付香,李玲,梁炫强.生物防治黄曲霉毒素污染研究进展.中国生物防治学报,2010,26(1):96-101.LIU F X,LI L,LIANG X Q.Advances on biological control of aflatoxin contamination.Chinese Journal of Biological Control,2010,26(1):96-101.(in Chinese)
    [39]李磊,姬建生,赵军锋.河南省玉米真菌毒素污染调查.中国卫生检验杂志,2017,27(8):1171-1173.LI L,JI J S,ZHAO J F.Investigation on mycotoxin contamination in corn in Henan.Chinese Journal of Health Laboratory Technology,2017,27(8):1171-1173.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700