空间频谱约束傅里叶叠层成像重建方法(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spectral-and spatial-constrained reconstruction for Fourier ptychography
  • 作者:李生福 ; 赵宇 ; 罗振雄 ; 叶雁 ; 刘正君
  • 英文作者:Li Shengfu;Zhao Yu;Luo Zhenxiong;Ye Yan;Liu Zhengjun;Institue of Fluid Physics, China Academy of Engineering Physics;Department of Automatic Test and Control, Harbin Institute of Technology;
  • 关键词:图像重建技术 ; 计算成像 ; 显微
  • 英文关键词:image reconstruction techniques;;computational imaging;;microscopy
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:中国工程物理研究院流体物理研究所;哈尔滨工业大学自动化测控系;
  • 出版日期:2018-12-27 15:20
  • 出版单位:红外与激光工程
  • 年:2019
  • 期:v.48;No.294
  • 基金:国家自然科学基金(11702275,11672275);; 科学挑战计划(TZ2016001)
  • 语种:英文;
  • 页:HWYJ201904043
  • 页数:8
  • CN:04
  • ISSN:12-1261/TN
  • 分类号:292-299
摘要
傅里叶叠层成像是一种能够同时实现大视场和高分辨的成像方法,公开发表的文献表明其空间分辨率极限由照明数值孔径和物镜数值孔径决定。为了进一步提高其分辨率,提出了频域和空间约束傅里叶叠层重建方法:利用传统重建算法获得的空间频谱进行频域约束,以传统重建算法获得的图像进行空间约束;该方法基于一个假设:图像具有稀疏特性;从传统重建算法获得的图像中提取所需的频域和空间约束条件,不需要额外采集数据和硬件改进。仿真和实验结果表明:与传统无约束重建方法相比,提出的算法能够提高分辨率和改善对比度,空间分辨率提高幅度高达~26%。
        Fourier ptychography(FP) is an effective approach capable of imaging with both large fieldof-view(FOV) and high resolution, the published works have proven that the resolution is limited by the sum of the illumination numerical aperture(NA) and the NA of the objective lens used. A spatial-and spectral-constrained FP(spFP) reconstruction algorithm was introduced to improve the spatial resolution.Unlike the typical unconstrained algorithm, the proposed algorithm incorporated both spatial-and spectral-constraints based on the additional prior information extracted from the typical FP reconstruction,and it did not need any additional hardware or captured images. The proposed approach was based on an assumption that the image was known to be sparse. Both simulation and experimental results show that the spFP reconstruction improves the spatial resolution by ~26%, and also improves the contrast and general quality of the reconstructed image.
引文
[1] Zheng G, Horstmeyer R, Yang C. Wide-field, highresolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7:739-745.
    [2] Ou X, Horstmeyer R, Yang C, et al. Quantitative phase imaging via Fourier ptychographic microscopy[J].Optics Letters, 2013, 38:4845-4848.
    [3] Ou X, Horstmeyer R, Zheng G, et al. High numerical aperture Fourier ptychography:principle, implementation and characterization[J]. Optics Express, 2015, 23(3):3472-3491.
    [4] Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J]. Optica, 2015, 2:104-111.
    [5] Tian L, Liu Z, Yeh L H, et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy[J]. Optica, 2015, 2:904-911.
    [6] Lu J, Shaw R A, Yang W. Improved particle size estimation in digital holography via sign matched filtering[J]. Optics Express, 2012, 20:12666-12674.
    [7] Katz J, Sheng J. Applications of holography in fluid mechanics and particle dynamics[J]. Annual Review of Fluid Mechanics, 2010, 42:531-555.
    [8] Fugal J P, Shaw R A. Cloud particle size distributions measured with an airborne digital in-line holographic instrument[J]. Atmospheric Measurement Techniques,2009, 2:259-271.
    [9] Denis L, Fournier C, Fournel T, et al. Direct extraction of the mean particle size from a digital hologram[J].Applied Optics, 2006, 45:944-952.
    [10] Li S, Zhao Y, Chen G. Extraction of particle size via Fourier ptychography with selective illuminations[J].Infrared and Laser Engineering, 2017, 46(11):1103005.
    [11] Li Shengfu, Zhao Yu, Chen Guanghua, et al. Highresolution extraction of particle size via Fourier Ptychography[C]//SPIE, LIDAR Imaging Detection and Target Recognition, 2017, 10605:106053G.
    [12] Shi Zhenhua, Lin Guanyu, Wang Shurong, et al.Numerical analysis of small particle measurement based on the theory of laser scattering[J]. Infrared and Laser Engineering, 2015, 44(7):2189-2194.(in Chinese)
    [13] Yang Chunling, Zhang Zhendong, Liu Guocheng.Influence of particle radius of composition on radiation characteristics of infrared decoy[J]. Infrared and Laser Engineering, 2016, 45(S1):S104005.(in Chinese)
    [14] Szameit A, Shechtman Y, Osherovich E, et al. Sparsitybased single-shot subwavelength coherent diffractive imaging[J]. Nature Materials, 2012, 11:455-459.
    [15] Sidorenko P, Kfir O, Shechtman Y, et al. Sparsitybased super-resolved coherent diffraction imaging of one-dimensional objects[J]. Nature Communications,2015, 6:8209-8217.
    [16] Ashok A, Baheti P K, Neifeld M A. Compressive imaging system design using task-specific information[J]. Applied Optics, 2008, 47:4457-4471.
    [17] Katz O, Bromberg Y, Silberberg Y. Ghost imaging via compressed sensing[C]//OSA Optics&Photonics,Frontiers in Optics, 2009:FThX3.
    [18] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man Cybernetics-Systems, 1979, 9(1):62-66.
    [19] Sun J, Chen Q, Zhang Y, et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy. Biomed[J]. Optics Express,2016, 7(4):1336-1350.
    [20] Zuo C, Sun J, Chen Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy[J].Optics Express, 2016, 24(18):20724-20744.
    [21] Zhang Y, Song P, Zhang J, et al. Fourier ptychographic microscopy with sparse representation[J]. Scientifc Reports, 2017, 7:8664.
    [22] Phansalkar N, More S, Sabale A, et al. Adaptive local thresholding for detection of nuclei in diversely stained cytology images[C]//IEEE, ICCSP, 2011.
    [23] Kuang C, Ma Y, Zhou R, et al. Digital micromirror device-based laser-illumination Fourier ptychographic microscopy[J]. Optics Express, 2015, 23(21):26999-27010.
    [24] Chung J, Lu H, Ou X, et al. Wide-field Fourier ptychographic microscopy using laser illumination source[J]. Optics Express, 2016, 7(11):4787-4802.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700