北京一次强飑线过程的闪电辐射源演变特征及其与对流区域和地面热力条件的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evolution of Lightning Radiation Sources of a Strong Squall Line over Beijing Metropolitan Region and Its Relation to Convection Region and Surface Thermodynamic Condition
  • 作者:孙凌 ; 陈志雄 ; 徐燕 ; 孙竹玲 ; 袁善锋 ; 王东方 ; 田野 ; 徐文静 ; 郄秀书
  • 英文作者:SUN Ling;CHEN Zhixiong;XU Yan;SUN Zhuling;YUAN Shanfeng;WANG Dongfang;TIAN Ye;XU Wenjing;QIE Xiushu;Key Laboratory of Middle Atmosphere and Global Environment Observation,Institute of Atmospheric Physics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Chengdu University of Information Technology;Beijing Municipal Meteorological Observation Center;Institute of Urban Meteorology,China Meteorological Administration;
  • 关键词:飑线 ; 闪电辐射源 ; 雷达回波 ; 相当位温 ; 对流云区
  • 英文关键词:Squall line;;Lightning radiation source;;Radar reflectivity;;Equivalent potential temperature;;Convection region
  • 中文刊名:DQXK
  • 英文刊名:Chinese Journal of Atmospheric Sciences
  • 机构:中国科学院大气物理研究所中层大气与全球环境探测重点实验室;中国科学院大学;成都信息工程大学;北京市气象探测中心;中国气象局北京城市气象研究所;
  • 出版日期:2019-07-15
  • 出版单位:大气科学
  • 年:2019
  • 期:v.43
  • 基金:国家自然科学基金项目41475002、41630425;; 国家重点基础研究发展计划(973计划)项目2014CB441401~~
  • 语种:中文;
  • 页:DQXK201904005
  • 页数:14
  • CN:04
  • ISSN:11-1768/O4
  • 分类号:58-71
摘要
利用2015年夏季北京闪电综合探测(BLNET)总闪辐射源定位、多普勒天气雷达、地面自动气象站和探空资料等多种协同观测资料,详细分析了2015年8月7日北京一次强飑线过程不同阶段的闪电特征,并探讨了闪电与对流区域和地面热力条件之间的关系。飑线过程整体上以云闪为主,根据雷达回波和闪电频数可以将飑线过程分为发展、增强及减弱三个阶段。发展阶段表现为多个孤立的γ中尺度对流降水单体,随着北京城区降水单体的迅速发展,强回波顶高延伸到-20℃温度层高度,闪电辐射源高度也逐步增加,闪电明显增多,但总闪电频数整体低于80次/min。增强阶段单体合并,闪电频数快速增长,0℃层以上及以下的强回波(>40 d BZ)体积明显增大,飑线形成后,总闪和地闪均达到峰值,分别约248次/min和18次/min,负地闪占总地闪比例为90%,辐射源主要分布在线状对流降水区内,辐射源数量峰值出现在5~9 km高度层。减弱阶段飑线主体下降到0℃以下并迅速衰减,辐射源分布明显向后部层云降水区倾斜。95%的闪电发生在对流线附近10 km范围内,即对流云区和过渡区。在系统发展和增强阶段,对流云区与层云区辐射源的活跃时段基本一致;系统减弱阶段,对流降水云区辐射源数量迅速减少。在系统的不同发展阶段,闪电活跃区域对应于冷池出流同平原暖湿气流在近地面形成的相当位温强梯度带内。
        Based on the data obtained from the 2015 summer campaign in Beijing area, including the total lightning location data from Beijing Lightning Network(BLNET), S-band Doppler radar data, ground-based automatic weather stations observations and radiosonde data, the evolution of lightning activities during a severe squall line process that occurred over Beijing metropolitan region on 7 August 2015 was analyzed. Its relation to convection region and surface thermodynamic condition was also discussed. According to radar echoes and lightning occurrence frequency, the whole squall line process can be divided into three stages(developing, intensifying and weakening), and the intra-cloud(IC)lightning flashes predominated during all the three stages in general. In the developing stage, several isolated γ mesoscale convective cells rapidly developed. With the echo top of the storm cell over Beijing metropolitan region extending to-20℃ level, lightning activities significantly increased, and the lightning radiation sources gradually spread to upper altitudes, but lightning rate was still less than 80 flashes/min for the whole system. In the intensifying stage, the flash rate increased rapidly, which was associated with the merging process of the cells. When the squall line formed, the volume of strong radar echoes(>40 dBZ) increased significantly for both above and below 0℃ levels, and the total flash and cloudto-ground(CG) flash peaked with rates of 248 flashes/min and 18 flashes/min, respectively. Negative CG flashes accounted for 90% of the total CG flashes. The lightning radiation sources were mainly detected in the linear convection area, and the number of radiation sources peaked within the layer of 5-9 km. In the weakening stage, the core of the squall line dropped below 0℃ level and quickly decayed, with the radiation sources obviously sloping backward to the area of stratiform clouds. About 95% of total flashes occurred within 10 km of the convective line, namely the convection and transition region. During intensifying and weakening stages, radiation sources reached active period simultaneously in the convection and stratiform region, while during the weakening stage, radiation sources in the convection region declined abruptly in the number. Lightning flashes mainly occurred over regions with strong surface equivalent potential temperature gradient induced by the outflow of convective cold pool and the relatively warm moist airmass from the plain.
引文
Carey L D,Rutledge S A.1996.A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm[J].Meteor.Atmos.Phys.,59(1-2):33-64.doi:10.1007/BF01032000
    Carey L D,Murphy M J,McCormick T L,et al.2005.Lightning location relative to storm structure in a leading-line,trailingstratiform mesoscale convective system[J].J.Geophys.Res.,110(D3):D03105.doi:10.1029/2003JD004371
    Dotzek N,Rabin R M,Carey L D,et al.2005.Lightning activity related to satellite and radar observations of a mesoscale convective system over Texas on 7-8 April 2002[J].Atmos.Res.,76(1-4):127-166.doi:10.1016/j.atmosres.2004.11.020
    Feng G L,Qie X S,Wang J,et al.2009.Lightning and Doppler radar observations of a squall line system[J].Atmos.Res.,91(2-4):466-478.doi:10.1016/j.atmosres.2008.05.015
    Lang T J,Rutledge S A.2008.Kinematic,microphysical,and electrical aspects of an asymmetric bow-echo mesoscale convective system observed during STEPS 2000[J].J.Geophys.Res.,113(D8):D08213.doi:10.1029/2006JD007709
    李娜,冉令坤,高守亭.2013.华东地区一次飑线过程的数值模拟与诊断分析[J].大气科学,37(3):595-608.Li Na,Ran Lingkun,Gao Shouting.2013.Numerical simulation and diagnosis study of a squall line in eastern China[J].Chinese Journal of Atmospheric Sciences(in Chinese),37(3):595-608.doi:10.3878/j.issn.1006-9895.2012.12007
    刘冬霞,郄秀书,冯桂力,等.2008.华北一次强对流天气系统的地闪时空演变特征分析[J].高原气象,27(2):358-364.Liu Dongxia,Qie Xiushu,Feng Guili,et al.2008.Analyses on lightning temporal and spatial characteristics in the severe convective weather in North China[J].Plateau Meteor.(in Chinese),27(2):358-364.
    刘冬霞,郄秀书,冯桂力.2010.华北一次中尺度对流系统中的闪电活动特征及其与雷暴动力过程的关系研究[J].大气科学,34(1):95-104.Liu Dongxia,Qie Xiushu,Feng Guili.2010.Evolution characteristics of the lightning and the relation with dynamical structure in a mesoscale convective system over North China[J].Chinese Journal of Atmospheric Sciences(in Chinese),34(1):95-104.doi:10.3878/j.issn.1006-9895.2010.01.09
    刘冬霞,郄秀书,王志超,等.2013.飑线系统中的闪电辐射源分布特征及云内电荷结构讨论[J].物理学报,62(21):219201.Liu Dongxia,Qie Xiushu,Wang Zhichao,et al.2013.Characteristics of lightning radiation source distribution and charge structure of squall line[J].Acta Phys.Sinica(in Chinese),62(21):219201.doi:10.7498/aps.62.219201
    刘佳,沈新勇,张大林,等.2013.台风“麦莎”的强度对台风前部飑线发展过程影响的研究[J].大气科学,37(5):1025-1037.Liu Jia,Shen Xinyong,Zhang Dalin,et al.2013.Impact of typhoon intensity on the development of a pre-tropical cyclone squall line[J].Chinese Journal of Atmospheric Sciences(in Chinese),37(5):1025-1037.doi:10.3878/j.issn.1006-9895.2013.12134
    刘黎平,牟容,许小永,等.2007.一次飑线过程的动力和微物理结构及滴谱变化对降水估测的影响研究[J].气象学报,65(4):601-611.Liu Liping,Mu Rong,Xu Xiaoyong,et al.2007.Dynamic and microphysical structures of a squall line system and effects of rain drop size distribution on precipitation[J].Acta Meteorologica Sinica(in Chinese),65(4):601-611.doi:10.3321/j.issn:0577-6619.2007.04.012
    MacGorman D R,Burgess D W,Mazur V,et al.1989.Lightning rates relative to tornadic storm evolution on 22 May 1981[J].J.Atmos.Sci.,46(2):221-250.doi:10.1175/1520-0469(1989)046<0221:LRRTTS>2.0.CO;2
    Meng Z Y,Zhang F Q,Markowski P,et al.2012.Modeling study on the development of a bowing structure and associated rear inflow within a squall line over South China[J].J.Atmos.Sci.,69(4):1182-1207.doi:10.1175/JAS-D-11-0121.1
    Schultz C J,Carey L D,Schultz E V,et al.2017.Kinematic and microphysical significance of lightning jumps versus non-jump increases in total flash rate[J].Wea.Forecasting,32(1):275-288.doi:10.1175/WAF-D-15-0175.1
    Smith S B,LaDue J G,Macgorman D R.2000.The relationship between cloud-to-ground lightning polarity and surface equivalent potential temperature during three tornadic outbreaks[J].Mon.Wea.Rev.,128(9):3320-3328.doi:10.1175/1520-0493(2000)128<3320:TRBCTG>2.0.CO;2
    Srivastava A,Tian Y,Qie X S,et al.2017.Performance assessment of Beijing Lightning Network(BLNET)and comparison with other lightning location networks across Beijing[J].Atmos.Res.,197:76-83.doi:10.1016/j.atmosres.2017.06.026
    孙虎林,罗亚丽,张人禾,等.2011.2009年6月3~4日黄淮地区强飑线成熟阶段特征分析[J].大气科学,35(1):105-120.Sun Hulin,Luo Yali,Zhang Renhe,et al.2011.Analysis on the mature-stage features of the severe squall line occurring over the Yellow River and Huaihe River basins during 3-4 June 2009[J].Chinese Journal of Atmospheric Sciences(in Chinese),35(1):105-120.doi:10.3878/j.issn.1006-9895.2011.01.09
    孙建华,郑淋淋,赵思雄.2014.水汽含量对飑线组织结构和强度影响的数值试验[J].大气科学,38(4):742-755.Sun Jianhua,Zheng Linlin,Zhao Sixiong.2014.Impact of moisture on the organizational mode and intensity of squall lines determined through n iun1 m Cerhiicnaels ee)x,p 3er8i(m4)e:n t7s4[2J]-.7C5h5i.n edsoei:J1o0u.r3n8a7l 8o/jf.iAstsmn.o 1s0p0h6er-i9c8 9S5c.i2en0c1e3s.
    王宇,郄秀书,王东方,等.2015.北京闪电综合探测网(BLNET):网络构成与初步定位结果[J].大气科学,39(3):571-582.Wang Yu,Qie Xiushu,Wang Dongfang,et al.2015.Beijing Lightning NETwork(BLNET):Configuration and preliminary results of lightning location[J].Chinese Journal of Atmospheric Sciences(in Chinese),39(3):571-582.doi:10.3878/j.issn.1006-9895.1407.14138
    Wang Y,Qie X S,Wang D F,et al.2016.Beijing Lightning Network(BLNET)and the observation on preliminary breakdown processes[J].Atmos.Res.,171:121-132.doi:10.1016/j.atmosres.2015.12.012
    Xu W X,Zipser E J,Liu C T,et al.2010.On the relationships between lightning frequency and thundercloud parameters of regional precipitation systems[J].J.Geophys.Res.,115(D12):D12203.doi:10.1029/2009JD013385
    徐燕,孙竹玲,周筠珺,等.2018.一次具有对流合并现象的强飑线系统的闪电活动特征及其与动力场的关系[J].大气科学,42(6):1393-1406.Xu Yan,Sun Zhuling,Zhou Yunjun,et al.2018.Lightning activity of a severe squall line with cell merging process and its relationships with dynamic fields[J].Chinese Journal of Atmospheric Sciences(in Chinese),42(6):1393-1406.doi:10.3878/j.issn.1006-9895.1801.17220
    易笑园,张义军,王红艳,等.2013.线状中尺度对流系统内多个强降水单体的结构演变及闪电活动特征[J].气象学报,71(6):1035-1046.Yi Xiaoyuan,Zhang Yijun,Wang Hongyan,et al.2013.Characteristics of the evolution of the severe rainfall cells structure in the leading line mesoscale convective system and the lightning activity[J].Acta Meteorologica Sinica(in Chinese),71(6):1035-1046.doi:10.11676/qxxb2013.094
    袁铁,郄秀书.2010.基于TRMM卫星对一次华南飑线的闪电活动及其与降水结构的关系研究[J].大气科学,34(1):58-70.Yuan Tie,Qie Xiushu.2010.TRMM-based study of lightning activity and its relationship with precipitation structure of a squall line in South China[J].Chinese Journal of Atmospheric Sciences(in Chinese),34(1):58-70.doi:10.3878/j.issn.1006-9895.2010.01.06
    张进,谈哲敏.2008.启动对流的初始扰动对热带飑线模拟的影响[J].大气科学,32(2):309-322.Zhang Jin,Tan Zhemin.2008.Impacts of initial convection-triggering perturbations on numerical simulation of a tropical squall line[J].Chinese Journal of Atmospheric Sciences(in Chinese),32(2):309-322.doi:10.3878/j.issn.1006-9895.2008.02.10
    张建军,王咏青,钟玮.2016.飑线组织化过程对环境垂直风切变和水汽的响应[J].大气科学,40(4):689-702.Zhang Jianjun,Wang Yongqing,Zhong Wei.2016.Impact of vertical wind shear and moisture on the organization of squall lines[J].Chinese Journal of Atmospheric Sciences(in Chinese),40(4):689-702.doi:10.3878/j.issn.1006-9895.1505.14337
    张哲,周玉淑,邓国.2016.2013年7月31日京津冀飑线过程的数值模拟与结构分析[J].大气科学,40(3):528-540.Zhang Zhe,Zhou Yushu,Deng Guo.2016.Numerical simulation and structural analysis of a squall line that occurred over the Beijing-Tianjin-Hebei region of China on 31 July 2013[J].Chinese Journal of Atmospheric Sciences(in Chinese),40(3):528-540.doi:10.3878/j.issn.1006-9895.1507.15127
    周围,包云轩,冉令坤,等.2018.一次飑线过程对流稳定度演变的诊断分析[J].大气科学,42(2):339-356.Zhou Wei,Bao Yunxuan,Ran Lingkun,et al.2018.Diagnostic analysis of convective stability evolution during a squall line process[J].Chinese Journal of Atmospheric Sciences(in Chinese),42(2):339-356.doi:10.3878/j.issn.1006-9895.1712.17126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700