功能化石墨烯/埃洛石纳米管对聚丙烯的协同强韧化改性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synergistic Strengthening-Toughening Modification of Polypropylene with Functional Graphene/Halloysite Nanotubes
  • 作者:王正君 ; 刘虹财 ; 郭怡 ; 卞军 ; 李建保 ; 蔺海兰 ; 鲁云
  • 英文作者:WANG Zhengjun;LIU Hongcai;GUO Yi;BIAN Jun;LI Jianbao;LIN Hailan;LU Yun;College of Materials Science and Engineering,Xihua University;Department of Mechanical Engineering,Graduate School of Science and Engineering,Chiba University;
  • 关键词:复合材料 ; 聚丙烯(PP) ; 石墨烯 ; 埃洛石纳米管 ; 性能
  • 英文关键词:Composite;;Polypropylene(PP);;Graphene;;Halloysite Nanotube(HNTs);;Properties
  • 中文刊名:CYJB
  • 英文刊名:Chinese Journal of Materials Research
  • 机构:西华大学材料科学与工程学院;千叶大学科学与工程研究院机械工程系;
  • 出版日期:2019-07-25
  • 出版单位:材料研究学报
  • 年:2019
  • 期:v.33
  • 基金:国家教育部春晖计划合作项目(Z2018088,Z2017070);; 西华大学大健康管理促进中心开放课题基金(DJKG2019-002);西华大学“西华杯”大学生大创项目(2019051);; 创新创业环境下“大材料学科”专业综合改革与实践教学团队项目(05050028)~~
  • 语种:中文;
  • 页:CYJB201907004
  • 页数:10
  • CN:07
  • ISSN:21-1328/TG
  • 分类号:27-36
摘要
以功能化氧化石墨烯(GO)-埃洛石纳米管(HNTs)杂化材料(GO@HNTs)为纳米填料,以聚丙烯(PP)为基体,通过熔融共混法制备了不同GO@HNTs含量的GO@HNTs/PP纳米复合材材料,并对所得杂化填料和PP纳米复合材料的结构与性能进行系统研究。研究结果表明,功能化GO与HNTs之间存在化学相互作用,二者之间形成的"屏障效应"抑制了彼此在PP基体中的团聚。仅添加0.5%GO@HNTs杂化纳米填料后,PP复合材料的拉伸强度和冲击强度分别较纯PP提高了17.5%和80.4%,与单独添加相同含量的GO或HNTs所得复合材料的力学性能相比,GO@HNTs杂化纳米填料对PP基体具有明显的协同增强增韧改性作用。与纯PP相比,GO@HNTs/PP试样表现出更高的储能模量、损耗模量和玻璃化转变峰值。由于GO@HNTs的"异相成核效应"和"物理热阻效应",有效提高了PP纳米复合材料的结晶温度、熔融温度、结晶度和耐热分解温度。
        Nanocomposites of GO@HNTs/PP were prepared through melt blending method with polypropylene(PP) as matrix and hybrid nanofillers(GO@HNTs) composed of functionalized graphene oxide(GO) and halloysite nanotubes(HNTs) as filler. The structures and properties of the prepared hybrid nanofillers and PP nanocomposites were systematically investigated. Results show that there is chemical interactions between functionalized GO and HNTs, resulting in formation a "barrier effect" between them and inhibit the aggregation of the two species in the PP matrix. The tensile strength and impact strength of PP nanocomposites with 0.5% GO@HNTs hybrid nano-filler increased by 17.5% and80.4%, respectively, compared with those of pure PP. Compared with the mechanical properties of composites prepared by adding the same content GO or HNTs alone, GO@HNTs hybrid nano-filler had obvious synergistic strengthening-toughening effect on the PP matrix. GO@HNTs/PP exhibited higher storage modulus, loss modulus and glass transitional temperatures than those of pure PP. The crystallization temperature, melting temperature, crystallinity and thermal decomposition temperature of PP nanocomposites are effectively increased due to the"heterogeneous nucleation effect"and"physical insulation effect"of GO@HNTs.
引文
[1] Geim A K, Novoselov K S. The rise of graphene[J]. Nat. Mater.,2007, 6(3):183
    [2] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442, 282
    [3] He X L, Yu Y F, Chen Q, et al. Recent advances in graphene based composite materials[J]. Mater. Rev., 2013, 27(7100):22
    [4] Kuilla T, Bhadra S, Yao D H, et al. Recent advances in graphene based polymer composites[J]. Prog. Polym. Sci., 2010, 35(11):1350
    [5] Huang X. Graphene-based composites[J]. Chem.Soc. Rev., 2012,41(2):666
    [6] Sengupta R, Bhattacharya M, Band-yopadhyay S, et al. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites[J]. Prog. Polym. Sci.,2011, 36(5):638
    [7] Ramanathan T, Abdala A A, Stankovich S, et al. Functionalized graphene sheets for polymer nanocomposites[J]. Nat. Nanotechnol., 2008, 3(6):327
    [8] Lonkar S P, Deshmukh Y S, Abdala A A. Recent advances in chemical modifications of graphene[J]. Nano. Res., 2015, 8(4):1039
    [9] Young S Y, Yo H B, Do H K, et al. Reinforcing effects of adding alkylated graphene oxide to polypropylene[J]. Carbon, 2011, 49(11):3553
    [10] Cao Y W, Zhang J, Feng J C, et al. Compatibilization of immiscible polymer blends using graphene oxide sheets[J]. ACS. Nano.,2011, 5(7):5920
    [11] Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide[J]. Chem. Soc. Rev., 2010, 39(1):228
    [12] Lin Y, Jin J, Song M. Preparation and characterisation of covalent polymer functionalized graphene oxide[J]. J. Mater. Chem., 2011,21(10):3455
    [13] Stankovich S, Piner R D, Nguyen S T, et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets[J]. Carbon, 2006, 44(15):3342
    [14] Xu C, Wu X, Zhu J, et al. Synthesis of amphiphilic graphite oxide[J]. Carbon, 2008, 46(2):386
    [15] Bian J, Wei X W, Lin H L, et al. Preparation and characterization of modified graphite oxide/poly(propylene carbonate)composites by solution intercalation[J]. Polym. Degrad. Stabil., 2011, 96(10):1833
    [16] Bian J, Lin H L, He F X, et al. A facile approach to selective reduction and functionalization of graphene oxide and its application in fabrication of multifunctional polypropylene nanocomposites[J].Polym. Compos., 2015, 7(2):131
    [17] Bian J, Wang Z J, Lin H L, et al. Thermal and mechanical properties of polypropylene nanocomposites reinforced with nano-SiO2functionalized graphene oxide[J]. Compos. Part A, 2017, 97:120
    [18] Bian J, Wang G, Lin H L, et al. HDPE composites strengthenedtoughened synergistically by L-aspartic acid functionalized graphene/carbon nanotubes hybrid nanomaterials[J]. J. Appl. Polym.Sci., 2017, 134(29). DOI:10.1002/APP.45055
    [19] Kavitha T, Gopalan A I, Lee K P, et al. Glucose sensing, photocatalytic and antibacterial properties of graphene-ZnO nanoparticle hybrids[J]. Carbon, 2012, 50(8):2994
    [20] Bell N J, Yun H N, Du A J, et al. Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared tio2-reduced graphene oxide composite[J]. J. Phys. Chem. C.,2011, 115(13):6004
    [21] Song J, Xu L, Zhou C Y, et al. Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection[J]. ACS. Appl. Mater.&Inter., 2013, 5(24):12928
    [22] Haldorai Y, Kim B K, Jo Y L, et al. Ag@graphene oxide nanocomposite as an efficient visible-light plasmonic photocatalyst for the degradation of organic pollutants:A facile green synthetic approach[J]. Mater. Chem.&Phys., 2014, 143(3):1452
    [23] Jiang T, Kuila T, Kim N H, et al. Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites[J]. Compos. Sci. Technol., 2013, 79:115
    [24] Hsiao M C, Ma C C M, Chiang J C, et al. Thermally conductive and electrically insulating epoxy nanocomposites with thermally reduced graphene oxide-silica hybrid nanosheets[J]. Nanoscale,2013, 5(13):5863
    [25] Kou L, Gao C. Making silica nanoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings[J]. Nanoscale, 2011, 3(2):519
    [26] Yang S Y, Lin W N, Huang Y L, et al. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites[J]. Carbon, 2011, 49(3):793
    [27] Yan J, Wei T, Fan Z, et al. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors[J]. J. Power Sources, 2010, 195(9):3041
    [28] Fan Z, Yan J, Zhi L, et al. A Three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors[J]. Adv. Mater., 2010, 22(33):3723
    [29] Lee J, Kim Y K, Min D H. Laser desorption/ionization mass spectrometric assay for phospholipase activity based on graphene oxide/carbon nanotube double-layer films[J]. J. Am. Chem. Soc.,2010, 132(42):14714
    [30] Yang S Y, Chang K H, Lee Y F, et al. Constructing a hierarchical graphene-carbon nanotube architecture for enhancing exposure of graphene and electrochemical activity of Pt nanoclusters[J]. Electrochem. Commun., 2010, 12(9):1206
    [31] Tung V C, Chen L M, Allen M J, et al. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors[J]. Nano. Lett., 2009, 9(5):1949
    [32] Yoo E J, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano. Lett., 2008, 8(8):2277
    [33] Wu W,Wu P J,He D,et al. Application progress of halloysite nanotube in polymer nanocomposites[J]. Chem. Indus. Eng. Prog.,2011, 30(12):2647(伍巍,吴鹏君,何丁等.长链硅烷对埃洛石纳米管的表面改性研究[J].化工进展, 2011, 30(12):2647)
    [34] Jia Z, Guo B, Jia D. Advances in rubber/halloysite nanotubes nanocomposites[J]. J. Nanosci.Nanotechno., 2014, 14(2):1758
    [35] Yu L, Wang H X, Zhang Y T, et al. Recent advances in halloysite nanotube derived composites for water treatment[J]. Environ. Sci:Nano., 2016, 3(1):28
    [36] Ravindra K, Manasi G, Sheetal G, et al. Halloysite nanotubes and applications:a review[J]. J. Adv. Sci. Res., 2012, 3(2):25
    [37] Swapna V P, Selvin T P, Suresh K I, et al. Thermal properties of poly(vinyl alcohol)(PVA)/halloysite nanotubes reinforced nanocomposites[J]. Int. J. Plas. Technol., 2015, 19(1):124
    [38] Long G B, Trinh D N, Nguyen T T. Grafting of poly(poly(ethylene glycol)methacrylate)onto halloysite nanotubes via surface-initiated atom transfer radical polymerization[J]. J. Nanosci. Nanotechnol., 2019, 19(2):927
    [39] Zhan Y Q, He S J, Wan X Y. Thermally and chemically stable poly(arylene ether nitrile)/halloysite nanotubes intercalated graphene oxide nanofibrous composite membranes for highly efficient oil/water emulsion separation in harsh environment[J]. J. Membrane.Sci., 2018, 567:76
    [40] Gaaz T S, Sulong A B, Akhtar M N, et al. Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites[J]. Molecules. 2015, 20(12):22833
    [41] Bian J, Wei X W, Lin H L, et al. Comparative study on the exfoliated expanded graphite nanosheet-PES composites prepared via different compounding method[J]. J. Appl. Polym. Sci., 2012; 12(5):3247
    [42] Wang W Z, Liu T X. Mechanical properties and morphologies of polypropylene composites synergistically filled by styrene-butadiene rubber and silica nanoparticles[J]. J. Appl. Polym. Sci., 2008,109, 1654
    [43] Chen W, Wu S, Lei Y, et al. Interfacial structure and performance of rubber/boehmite nanocomposites modified by methacrylic acid[J]. Polymer, 2011, 52(19):4387
    [44] Ferrari A C, Robertson J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon[J]. Phys. Rev. B., 2000, 61:14095
    [45] Tuinstra F, Koenig J. L. Raman spectrum of graphite[J]. J. Chem.Phys., 1970, 53:1126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700