利用多源遥感数据识别波弗特海冰间水道
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Detection of Sea Ice Lead in Beaufort Sea Based on Multisensory Remote Sensing Images
  • 作者:屈猛 ; 庞小平 ; 赵羲 ; 季青 ; 范沛
  • 英文作者:QU Meng;PANG Xiaoping;ZHAO Xi;JI Qing;FAN Pei;Chinese Antarctic Center of Surveying and Mapping, Wuhan University;Key Laboratory of Polar Surveying and Mapping, National Administration of Surveying,Mapping and Geoinformation, Wuhan University;
  • 关键词:冰间水道 ; RadarSat-2 ; 冰面温度 ; MODIS ; 波弗特海
  • 英文关键词:sea ice lead;;RadarSat-2;;ice surface temperature;;MODIS;;Beaufort Sea
  • 中文刊名:WHCH
  • 英文刊名:Geomatics and Information Science of Wuhan University
  • 机构:武汉大学中国南极测绘研究中心;武汉大学极地测绘科学国家测绘地理信息局重点实验室;
  • 出版日期:2019-06-05
  • 出版单位:武汉大学学报(信息科学版)
  • 年:2019
  • 期:v.44
  • 基金:国家自然科学基金(41576188);; 国家重点研发计划(2016YFC1402704)~~
  • 语种:中文;
  • 页:WHCH201906018
  • 页数:8
  • CN:06
  • ISSN:42-1676/TN
  • 分类号:130-137
摘要
采用MODIS可见光反射率、热红外亮温和RadarSat-2双极化后向散射等多源数据,通过建立决策树综合判断来识别波弗特海域冬季的冰间水道及其内部冰型,并进行精度评价。研究发现,MODIS热红外只能粗略提取冰间水道轮廓;而高分辨率的RadarSat-2影像可以提供更多海冰类型信息,但是不同冰型的后向散射信号有重叠,影响水道提取的精度。研究结合多源数据建立决策树,综合极化后向散射和表面温度等参数来判断海冰类型,从而识别不同发育阶段的冰间水道。该方法的识别精度优于单变量方法。高分辨率Sentinel-2光学影像验证了不同阶段冰间水道的顺序分布。多源数据的应用有助于更准确地计算水道区域的海-气热通量和产冰量,同时为船只导航提供更详细的冰情信息。
        Based on multisensory data, including sptical and thermal images from MODIS, and dual-polarization SAR image from RadarSat-2, sea ice in Beaufort Sea is classified, sea ice leads are identified and accuracy of the result is also evaluated. Experiment shows that thermal images from MODIS is only useful in extracting lead area with coarse resolution, while the high-resolution SAR image could provide more information on sea ice type in lead. However, overlay of signals from different ice type largely reduces the overall accuracy from supervised classification of RadarSat-2 image. Therefore, decision tree is established to incorporate multisensory data. Characteristics of different ice types and leads is analyzed and utilized in decision tree to detect ice leads in different stages of development. Validation shows that overall accuracy of the result from decision tree is 14.8% higher than that from supervised classification. The sequential structure composed of various development stages of ice leads is confirmed in Sentinel-2 images. The result might facilitate accurate calculation of heat flux and ice production, as well as ship navigation with detail ice type in lead.
引文
[1] Fequet D.MANICE:Manual of Standard Procedures for Observing and Reporting Ice Conditions[S/OL].Operations and Field Services Divisions,Canadian Ice Service,2005(2016-03-07) [2019-03-08].https://www.canada.ca/en/environment-climate-change/services/weather-manuals-documentation/manice-manual-of-ice/chapter-1.html
    [2] Bauer J,Martin S.A Model of Grease Ice Growth in Small Leads[J].Journal of Geophysical Research:Oceans,1983,88(C5):2 917-2 925
    [3] Andreas E L,Paulson C A,William R M,et al.The Turbulent Heat Flux from Arctic Leads[J].Boundary-Layer Meteorology,1979,17(1):57-91
    [4] Alam A,Curry J A.Evolution of New Ice and Turbulent Fluxes over Freezing Winter Leads[J].Journal of Geophysical Research:Oceans,1998,103(C8):15 783-15 802
    [5] Maykut G A.Energy Exchange over Young Sea Ice in the Central Arctic[J].Journal of Geophysical Research:Oceans,1978,83(C7):3 646-3 658
    [6] Marcq S,Weiss J.Influence of Sea Ice Lead-width Distribution on Turbulent Heat Transfer Between the Ocean and the Atmosphere[J].The Cryosphere,2012(6):143-156
    [7] Lüpkes C,Vihma T,Birnbaum G,et al.Influence of Leads in Sea Ice on the Temperature of the Atmospheric Boundary Layer During Polar Night[J].Geophysical Research Letters,2008,35(3):135-144
    [8] Ruffieux D,Persson P O G,Fairall C W,et al.Ice Pack and Lead Surface Energy Budgets During LEADEX 1992[J].Journal of Geophysical Research:Oceans,1995,100(C3):4 593-4 612
    [9] Eisen O,Kottmeier C.On the Importance of Leads in Sea Ice to the Energy Balance and Ice Formation in the Weddell Sea[J].Journal of Geophysical Research:Oceans,2000,105(C6):14 045-14 060
    [10] Pinto J O,Alam A,Maslanik J A,et al.Surface Characteristics and Atmospheric Footprint of Springtime Arctic Leads at SHEBA[J].Journal of Geophysical Research:Oceans,2003,108 (C4):8 051-8 065
    [11] Jung T,Gordon N D,Bauer P,et al.Advancing Polar Prediction Capabilities on Daily to Seasonal Time Scales[J].Bulletin of the American Meteorological Society,2016,97(9):1 631-1 647
    [12] Eppler D T,Farmer L D,Lohanick A W,et al.Passive Microwave Signatures of Sea Ice[M]// Carsey F D.Microwave Remote Sensing of Sea Ice.Washington:American Geophysical Union,1992:47-71
    [13] Onstott R G.SAR and Scatterometer Signatures of Sea Ice[M]// Carsey F D.Microwave Remote Sensing of Sea Ice.Washington:American Geophysical Union,1992:73-104
    [14] Martin S.Frazil Ice in Rivers and Oceans[J].Annual Review of Fluid Mechanics,1981,13(1):379-397
    [15] Fett R W,Davidson K L,Overland J E.Opening and Closing of the “Husky-l” Lead Complex[C]// Johannessen O M,Muench R D,Overland J E.The Polar Oceans and Their Role in Shaping the Global Environment,AGU Geophysical Monograph.Washington:The American Geophysical Union,1994,85:455-473
    [16] Fett R W,Englebretson R E,Burk S D.Techniques for Analyzing Lead Condition in Visible,Infrared and Microwave Satellite Imagery[J].Journal of Geophysical Research:Atmospheres,1997,102(D12):13 657-13 671
    [17] Fily M,Rothrock D A.Opening and Closing of Sea Ice Leads:Digital Measurements from Synthetic Aperture Radar[J].Journal of Geophysical Research:Oceans,1990,95(C1):789-796
    [18] Lindsay R W,Rothrock D A.Arctic Sea Ice Leads from Advanced Very High Resolution Radiometer Images[J].Journal of Geophysical Research:Oceans,1995,100(C3):4 533-4 544
    [19] R?hrs J,Kaleschke L.An Algorithm to Detect Sea Ice Leads by Using AMSR-E Passive Microwave Imagery[J].The Cryosphere,2012,6(2):343-352
    [20] Ivanova N,Rampal P,Bouillon S.Error Assessment of Satellite-Derived Lead Fraction in the Arctic[J].The Cryosphere,2016,10(2):585-595
    [21] Willmes S,Heinemann G.Pan-Arctic Lead Detection from MODIS Thermal Infrared Imagery[J].Annals of Glaciology,2015,56(69):29-37
    [22] Tschudi M A,Curry J A,Maslanik J A.Characteri-zation of Springtime Leads in the Beaufort/Chukchi Seas from Airborne and Satellite Observations Du-ring FIRE/SHEBA[J].Journal of Geophysical Research:Oceans,2002,107(C10):8 034-8 048
    [23] Hui F,Li X,Zhao T,et al.Semi-automatic Mapping of Tidal Cracks in the Fast Ice Region Near Zhongshan Station in East Antarctica Using Landsat-8 OLI Imagery[J].Remote Sensing,2016,8(3):242
    [24] Br?han D,Kaleschke L.A Nine-year Climatology of Arctic Sea Ice Lead Orientation and Frequency from AMSR-E[J].Remote Sensing,2014,6(2):1 451-1 475
    [25] Wernecke A,Kaleschke L.Lead Detection in Arctic Sea Ice from CryoSat-2:Quality Assessment,Lead Area Fraction and Width Distribution[J].The Cryosphere,2015,9(5):1 955-1 968
    [26] Willmes S,Heinemann G.Sea-Ice Wintertime Lead Frequencies and Regional Characteristics in the Arctic,2003-2015[J].Remote Sensing,2015,8(1):4
    [27] Steffen K,Heinrichs J.Feasibility of Sea Ice Typing with Wynthetic Aperture Radar (SAR):Merging of Landsat Thematic Mapper and ERS 1 SAR Satellite Imagery[J].Journal of Geophysical Research:Oceans,1994,99(C11):22 413-22 424
    [28] Nghiem S V,Bertoia C.Study of Multi-Polarization C-Band Backscatter Signatures for Arctic Sea Ice Mapping with Future Satellite SAR[J].Canadian Journal of Remote Sensing,2001,27(5):387-402
    [29] Scheuchl B,Flett D,Caves R,et al.Potential of RadarSat-2 Data for Operational Sea Ice Monitoring[J].Canadian Journal of Remote Sensing,2004,30(3):448-461
    [30] Barry R G,Miles M W,Cianflone R C,et al.Characteristics of Arctic Sea Ice from Remote-Sensing Data and Their Relationship to Atmospheric Processes[J].Annals of Glaciology,1989,12(1):9-15
    [31] Spreen G,Kaleschke L,Heygster G.Sea Ice Remote Sensing Using AMSR-E 89-GHz Channels[J].Journal of Geophysical Research:Oceans,2008,113(C2):42-48
    [32] Key J R,Collins J B,Fowler C,et al.High-Latitude Surface Temperature Estimates from Thermal Satellite Data[J].Remote Sensing of Environment,1997,61(2):302-309
    [33] Hall D K,Key J R,Casey K A,et al.Sea Ice Surface Temperature Product from MODIS[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(5):1 076-1 087
    [34] Zhang Xi,Zhang Jie,Meng Junmin,et al.Polarimetric Scattering Characteristics Based Sea Ice Types Classification by Polarimetric Synthetic Aperture Radar:Taking Sea Ice in the Bohai Sea for Example[J].Acta Oceanologica Sinica,2013,35(5):95-101(张晰,张杰,孟俊敏,等.基于极化散射特征的极化合成孔径雷达海冰分类方法研究:以渤海海冰分类为例[J].海洋学报,2013,35(5):95-101)
    [35] Ackerman S,Strabala K,Menzel P,et al.Discriminating Clear-sky from Cloud with MODIS Algorithm Theoretical Basis Document (MOD35)[R].Madison:MOIDS Cloud Mask Team,Cooperative Institute for Meteorological Satellite Studies,University of Wisconsin,2010
    [36] M?kynen M,Cheng B,Simil? M.On the Accuracy of Thin-ice Thickness Retrieval Using MODIS Thermal Imagery over Arctic First-year Ice[J].Annals of Glaciology,2013,54(62):87-96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700