基于逆模型的调节阀粘滞补偿
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Valve Stiction Compensation Based on Inverse Model
  • 作者:陈鹏 ; 王志国 ; 刘飞
  • 英文作者:CHEN Peng;WANG Zhi-guo;LIU Fei;School of Internet of Things Engineering, Jiangnan University;
  • 关键词:调节阀 ; 逆模型 ; 粘滞补偿 ; K-means聚类算法 ; 聚类中心
  • 英文关键词:valve;;inverse model;;stiction compensation;;K-means clustering algorithm;;center of clustering
  • 中文刊名:HGZD
  • 英文刊名:Control and Instruments in Chemical Industry
  • 机构:江南大学物联网工程学院;
  • 出版日期:2019-05-10
  • 出版单位:化工自动化及仪表
  • 年:2019
  • 期:v.46;No.344
  • 基金:国家自然科学基金项目(61773183)
  • 语种:中文;
  • 页:HGZD201905012
  • 页数:5
  • CN:05
  • ISSN:62-1037/TQ
  • 分类号:49-53
摘要
调节阀粘滞是实际控制回路中的一种非线性特征,会引起控制回路性能下降。针对此问题,提出一种基于逆模型的调节阀粘滞补偿控制方案。首先,采集阀门输入输出数据,使用K-means聚类获得调节阀粘滞特征工作点;然后,建立粘滞分段函数模型,再以分段函数的反函数形式构造阀门粘滞逆模型,并基于此设计逆模型控制器以补偿阀门粘滞非线性。最后,通过数据仿真对所提方法进行测试,结果验证了其有效性。
        Valve stiction is a nonlinear feature in the actual control loop that can decrease control loop performance. Aiming at this problem, a control scheme for the valve stiction compensation based on the inverse model was proposed. Firstly, having both input and output data of the valve collected and the working point of the valve stiction characteristic obtained by K-means clustering; then having the stiction piecewise function model established and the valve stiction inverse model constructed by the inverse function of the piecewise function. Based on this design, the inverse model controller designed can be used to compensate the valve stiction nonlinearity. The proposed method tested by data simulation verifies its effectiveness.
引文
[1] Bialkowski W L.Dreams Versus Reality:A View from both Sides of the Gap[J].Pulp & Paper,1993,94(11):19~27.
    [2] Choudhury M A A S,Thornhill N F,Shah S L,et al.Automatic Detection and Quantification of Stiction in Control Valves[J].Control Engineering Practice,2006,14(12):1395~1412.
    [3] H?gglund T.A Friction Compensator for Pneumatic Control Valves[J].Journal of Process Control,2002,12(8):897~904.
    [4] Srinivasan R,Rengaswamy R.Stiction Compensation in Process Control Loops:A Framework for Integrating Stiction Measure and Compensation[J].Industrial & Engineering Chemistry Research,2005,44(24):9164~9174.
    [5] Mohammad M A,Huang B.Frequency Analysis and Experimental Validation for Stiction Phenomenon in Multi-Loop Processes[J].Journal of Process Control,2011,21(4):437~447.
    [6] 付川,丁维明.控制回路中的阀门迟滞补偿方法[J].自动化仪表,2010,31(10):8~11.
    [7] 朱亚平,夏春明,张亮.阀门粘滞在线检测及粘滞补偿的KNOCKER方法改进研究[J].液压与气动,2014,(8):41~48.
    [8] 张昭.气动调节阀的故障诊断及其粘滞故障补偿[D].上海:华东理工大学,2015.
    [9] Kuhnen K,Krejci P.Compensation of Complex Hysteresis and Creep Effects in Piezoelectrically Actuated Systems—A New Preisach Modeling Approach[J].IEEE Transactions on Automatic Control,2009,54(3):537~550.
    [10] Tan U,Latt W T,Ang W T.Modeling Piezoelectric Actuator Hysteresis with Singularity Free Prandtl-Ishlinskii Model[C].2006 IEEE International Conference on Robotics & Biomimetics.Piscataway,NJ:IEEE,2006:251~256.
    [11] 马连伟,谭永红,邹涛.基于神经网络的迟滞逆模型[J].控制理论与应用,2008,25(5):823~826.
    [12] 赵广义,王伟国,李博.压电陶瓷迟滞逆模型的前馈PID控制[J].压电与声光,2014,36(6):914~916.
    [13] Stenman A,Gustafsson F,Forsman K.A Segmentation-Based Method for Detection of Stiction in Control Valves[J].International Journal of Adaptive Control and Signal Processing,2003,17(7-9):625~634.
    [14] Choudhury M A A S,Thornhill N F,Shah S L.Modeling Valve Stiction[J].Control Engineering Practice,2005,13(5):641~658.
    [15] 阳丹.迟滞非线性系统建模与控制[D].衡阳:南华大学,2014.
    [16] 郁启麟.K-means算法初始聚类中心选择的优化[J].计算机系统应用,2017,26(5):170~174.
    [17] Chen S L,Tan K K,Huang S.Two-Layer Binary Tree Data-Driven Model for Valve Stiction[J].Industrial & Engineering Chemistry Research,2008,47(8):2842~2848.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700