低频标准真空涨落的测量
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Measurement of standard vacuum noise at low frequencies
  • 作者:薛佳 ; 秦际良 ; 张玉驰 ; 李刚 ; 张鹏飞 ; 张天才 ; 彭堃墀
  • 英文作者:Xue Jia;Qin Ji-Liang;Zhang Yu-Chi;Li Gang;Zhang Peng-Fei;Zhang Tian-Cai;Peng Kun-Chi;State Key Laboratory of Quantum Optics and Quantum Optics Devices,Collaborative Innovation Center of Extreme Optics,Institute of Opto-Electronics,Shanxi University;College of Physics and Electronic Engineering,Shanxi University;
  • 关键词:低频 ; 量子噪声 ; 平衡零拍探测 ; 共模抑制比
  • 英文关键词:low frequency;;quantum vacuum noise;;balanced homodyne detection;;common mode rejection ratio
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:山西大学光电研究所,量子光学与光量子器件国家重点实验室,极端光学协同创新中心;山西大学物理电子工程学院;
  • 出版日期:2016-01-12 16:57
  • 出版单位:物理学报
  • 年:2016
  • 期:v.65
  • 基金:国家自然科学基金(批准号:91336107,61227902,61275210);; 山西省自然科学基金(批准号:2014021011-2)资助的课题~~
  • 语种:中文;
  • 页:WLXB201604021
  • 页数:7
  • CN:04
  • ISSN:11-1958/O4
  • 分类号:152-158
摘要
采用自平衡零拍方案,对低频段的标准量子真空涨落进行了测量.实验确定了该系统的饱和光功率约为3.2 mW.在10 Hz—400 kHz的频率范围内,系统的共模抑制比平均为55 dB,在100 Hz处高达63 dB,对激光经典技术噪声具有很强的抑制作用.当入射光功率为400μW时,真空涨落噪声达到11 dB.此低频量子真空噪声探测系统可广泛应用于量子计量和量子光学等研究领域.
        Vacuum fluctuation at audio frequencies is very important and interesting in many research fields, such as the gravitational wave detection, ultra-weak magnetic field measurement, and the research of quantum metrology, etc.Since the generation of squeezed light in 1985, most of the squeezed light have been generated and measured at radio frequencies(~MHz) as there has not been much technical noise at higher frequencies. In the Michelson-interferometerbased gravitational wave detection, the detection band has frequencies from a few to tens of thousands Hz. Measuring vacuum noise at such low frequencies is a challenge since we have to stabilize and control all the audio noises and the interferences from a variety of mechanical and electronic noises, therefore a very high classical noise suppression is needed when the measurement time increases. In order to measure the squeezed light of low frequencies, the standard vacuum noise at audio frequencies must be measured. In this paper, a balanced homodyne detection system for measuring the low-frequency quantum vacuum noises is reported. It is not trivial to extend the detected frequency to very low analysis frequencies. Through a self-made self-subtraction balanced homodyne configuration, which can eliminate the DC component of each photocurrent from the photodiode and the classical common-mode technical noise, the standard vacuum noise has been detected. The linearity of the vacuum noise power has been validated by varying the local oscillator power, showing that the saturation power of light incidence is about 3.2 mW. When the incident-light power is 400 μW, the standard vacuum noise is 11 dB higher than the electronic noise at 80 Hz. In the regime of about 80 Hz to 400 kHz, the linearity of the standard noise power as a function of incident laser power is verified. However, when the measurement is carried out at even lower frequencies, for example, 50 Hz, we may encounter some excess and nonstationary noises and find that the measured noise power is not proportional to the incident light power any more. These non-stationary noises are the main technical obstacle at low frequencies. The average common mode rejection ratio in the test frequency range from 10 Hz to 400 kHz is 55 dB and its maximum 63 dB at 100 Hz is obtained, implying a high suppression of the technical noise. This self-made homodyne vacuum noise detector can be widely used for precision measurement in quantum metrology and quantum optics.
引文
[1]Caves C M 1981 Phys.Rev.D 23 1693
    [2]Goda K,Miyakawa O,Mikhailov E E,Saraf S,Adhikari R,Mc Kenzie K,Ward R,Vass S,Weinstein A J,Mavalvala N 2008 Nat.Phys.4 472
    [3]Chelkowski S 2007 Ph.D.Dissertation(Hannover:Gottfried Wilhelm Leibniz Universit?t)
    [4]Koschorreck M,Napolitano M,Dubost B,Mitchell M W2010 Phys.Rev.Lett.104 093602
    [5]Wolfgramm F,CerèA,Beduini F A,Predojevi?A,Koschorreck M 2010 Phys.Rev.Lett.105 053601
    [6]Horrom T,Singh R,Dowling J P,Mikhailov E E 2012Phys.Rev.A 86 023803
    [7]Banaszek K,Demkowicz-Dobrzański R,Walmsley I A2009 Nat.Photon.3 673
    [8]Slusher R E,Hollberg L W,Yurke B,Mertz J C,Valley J F 1985 Phys.Rev.Lett.55 2409
    [9]Mehmet M,Ast S,Eberle T,Steinlechner S,Vahlbruch H,Schnabel R 2011 Opt.Express 19 25763
    [10]Zhang T C,Zhang J X,Xie C D,Peng K C 1998 Acta Phys.Sin.7 340(Overseas Edition)
    [11]Zhang T C,Li T Y,Effenterre D V,Xie C D,Peng K C1998 Acta Phys.Sin.47 1498(in Chinese)[张天才,李廷鱼,Effenterre D V,谢常德,彭堃墀1998物理学报471498]
    [12]Dong R F,Zhang J X,Zhang T C,Zhang J,Xie C D,Peng K C 2001 Acta Phys.Sin.50 462(in Chinese)[董瑞芳,张俊香,张天才,张靖,谢常德,彭堃墀2001物理学报50 462]
    [13]Zhou Q Q,Liu J L,Zhang K S 2010 Acta Sin.Quantum Opt.16 152(in Chinese)[周倩倩,刘建丽,张宽收2010量子光学学报16 152]
    [14]Wang J J,Jia X J,Peng K C 2012 Acta Opt.Sin.310127001(in Chinese)[王金晶,贾晓军,彭堃墀2012光学学报31 0127001]
    [15]Mc Kenzie K 2008 Ph.D.Dissertation(Canberra:Australian National University)
    [16]Vahlbruch H,Chelkowski S,Danzmann K,Schnabel R2007 New J.Phys.9 371
    [17]Vahlbruch H 2008 Ph.D.Dissertation(Hannover:The Albert Einstein Institute and the Institute of Gravitational Physics of Leibniz Universit?t Hannover)
    [18]Stefszky M S,Mow-Lowry C M,Chua S S Y,Shaddock D A,Buchler B C,Vahlbruch H,Khalaidovski A,Schnabel R,Lam P K,Mc Clelland D E 2012 Class.Quantum Grav.29 145015
    [19]Dwyer S E 2013 Ph.D.Dissertation(Cambridge:Massachusetts Institute of Technology)
    [20]The LIGO Scientific Collaboration 2011 Nat.Phys.7962
    [21]Stefszky M S 2012 Ph.D.Dissertation(Canberra:Australian National University)
    [22]Rogalski A(translated by Zhou H X,Cheng Y F)2014Infrared Detectors(Beijing:China Machine Press)pp47,48(in Chinese)[罗格尔斯基A著(周海宪,程云芳译)2014红外探测器(北京:机械工业出版社)第47,48页]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700