R141b在圆形微通道内的沸腾换热实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Investigation on Flow Boiling Heat Transfer of R141b in Circular Micro-Channel Heat Sinks
  • 作者:张宗卫 ; 徐文迪 ; 刘聪 ; 付东金 ; 周志豪
  • 英文作者:ZHANG Zong-wei;XU Wen-di;LIU Cong;FU Dong-jin;ZHOU Zhi-hao;College of Aeronautical Engineering,Civil Aviation University of China;College of Air Traffic Management,Civil Aviation University of China;
  • 关键词:R141b ; 换热特性 ; 圆形微通道 ; 沸腾 ; 平均传热系数
  • 英文关键词:R141b;;Heat transfer characteristic;;Circular micro-channel;;Boiling;;Average heat transfer coefficient
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:中国民航大学航空工程学院;中国民航大学空中交通管理学院;
  • 出版日期:2019-01-25 10:36
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.264
  • 基金:中央高校基本科研业务费中国民航大学专项(3122014C006);; 中国民航大学科研启动基金项目(2013QD11S)
  • 语种:中文;
  • 页:TJJS201906020
  • 页数:7
  • CN:06
  • ISSN:11-1813/V
  • 分类号:169-175
摘要
为提高换热强度、解决设备内部高热流密度散热问题,采用实验方法研究R141b在不同直径(D=0.5mm和1.0mm)水平圆形微通道内的沸腾换热特性,分析了热流密度(q=2.0kW/m~2~47.6kW/m~2)、质量干度(x=0~0.6)、质量流速(G=111.11kg/(m~2·s)~333.33kg/(m~2·s))的变化对平均传热系数h的影响,探究不同情况下影响沸腾换热的主导因素。实验研究表明:平均传热系数h随热流密度q的增加而减小,在不同范围内减小速率有明显差异;热流密度q=2kW/m~2~5kW/m~2时质量流速G对平均传热系数h影响较明显,热流密度较高时质量流速G对换热影响很小;在质量流速G=111.11kg/(m~2·s)~333.33kg/(m~2·s),质量干度x>0.3时,平均传热系数h随质量干度x增加而明显下降,在设计微通道换热器时应尽量使R141b处于初始沸腾阶段以获得更好换热效果,并采取一定措施预防干度过高引起的换热恶化。
        In order to intensify heat transfer and solve the problem of high heat flux and heat dissipation in-side the equipment,the boiling heat transfer characteristics of R141 b in horizontal micro-channels with differentdiameters(D=0.5 mm and 1.0 mm)were studied experimentally. The effects of heat flux(q=2.0 kW/m~2~47.6 kW/m~2),vapor quality(x=0~0.6)and mass flow rate(G=111.11 kg/(m~2·s)~333.33 kg/(m~2·s))on the average heattransfer coefficient h were analyzed,and the dominant factors affecting boiling heat transfer were explored underdifferent conditions. The experimental study showed that the average heat transfer coefficient h decreased with theincrease of heat flux q in significantly different rate according to different range. The effects of mass flow rate G onthe average heat transfer coefficient h are obvious when heat flux q=2 kW/m~2~5 kW/m~2,while when the heat flux ishigh,the mass flow rate G has little effect on the heat transfer. At different mass flow rate(G=111.11 kg/(m~2·s)~333.33 kg/(m~2·s))when the vapor quality x>0.3,the average heat transfer coefficient h decreased with increas-ing vapor quality x. Micro-channel heat exchangers should be well-designed to insure R141 b working under theinitial boiling stage to achieve better heat exchange effect,and certain measures should be taken to prevent the heat deterioration caused by excessive dryness.
引文
[1]孙彦红.微液膜对微通道流动沸腾影响机理的研究[D].北京:中国科学院工程热物理研究所,2017.
    [2] Bachmann C,Bar-Cohen A. Hotspot Remediation with Anisotropic Thermal Interface Materials[C]. Orlando:Intersociety Conference on IEEE,2008:238-247.
    [3] Singh B S,Hasan M M. Innovative Multi-Environment,Multimode Thermal Control System[C]. Dubrovnik:International Conference on Environmental Systems,2007.
    [4] Charnay Romain. Flow Boiling Heat Transfer in Minichannels at High Saturation Temperatures,Part I:Experimental Investigation and Analysis of the Heat Transfer Mechanisms[J]. International Journal of Heat and Mass Transfer,2015,87(2):636-652.
    [5] Issam Mudawar. Two-Phase Micro-Channel Heat Sinks:Theory, Applications and Limitations[J]. Journal of Electronic Packaging,2011,133(4).
    [6] Mehendale S S. Fluid Flow and Heat Transfer at Micro and Meso-Scales with Application to Heat Exchanger Design[J]. Applied Mechanics Reviews,2000,53(7):175-193.
    [7] Ong C L. Macro-to-Microchannel Transition in TwoPhase Flow,Part 1:Two-Phase Flow Patterns and Film Thickness Measurements[J]. Experimental Thermal and Fluid Science,2011,35(1):37-47.
    [8] Bao Z Y. Flow Boiling Heat Transfer of Freon R1 1 and HCFC1 23 in Narrow Passages[J]. International Journal of Heat and Mass Transfer,2000,43(18):3347-3358.
    [9] Lee Jaeseon,Mudawar. Two Phase Flow in High-HeatFlux Micro-Channel Heat Sink for Refrigeration Cooling Applications,Part 1:Pressure Drop Characteristics[J].International Journal of Heat and Mass Transfer,2005,48(5):928-940.
    [10] Cheng Ping. Recent Work on Boiling and Condensation in Microchannels[J]. Journal of Heat Transfer,2009,131(4):569-574.
    [11] Saitoh Shizuo. Effect of Tube Diameter on Boiling Heat Transfer of R-134 a in Horizontal Small-Diameter Tubes[J]. International Journal of Heat and Mass Transfer,2005,48(23):4973-4984.
    [12] Chin L Ong, Thome. Flow Boiling Heat Transfer of R134a,R236fa and R245fa in a Horizontal 1.030mm Circular Channel[J]. Experimental Thermal and Fluid Science,2009,33(4):651-663.
    [13]李琳,刘存良,杨祺,等.微细管道内R141b沸腾气液两相流动与换热特性数值仿真[J].推进技术,2018,39(4):802-809.(LI Lin,LIU Cun-liang,YANG Qi,et al. Numerical Simulations on Two-Phase Boiling Flow and Heat Transfer of Refrigerant R141b in Micro/Mini-Channel[J]. Journal of Propulsion Technology,2018,39(4):802-809.)
    [14] Han J L,Sang Y L. Heat Transfer Correlation for Boiling Flows in Small Rectangular Horizontal Channels with Low Aspect Tatios[J]. International Journal of Multiphase Flow,2001,27(12):2043-2062.
    [15] Steinke Mark E,Kandlikar. An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels[J]. Journal of Heat Transfer,2004,126(4):518-526.
    [16]姜玉廷,郑群,罗铭聪,等.叶片前缘两相流冲击冷却的耦合数值模拟[J].推进技术,2015,36(3):443-449.(JIANG Yu-ting,ZHENG Qun,LUO Mingcong,et al. Conjugate Simulation of Two Phase Flow Impingement Cooling[J]. Journal of Propulsion Technology,2015,36(3):443-449.)
    [17]谷云庆,牟介刚,代东顺,等.基于气体射流的气液两相流动减阻特性[J].推进技术,2015,36(11):1640-1647.(GU Yun-qing,MU Jie-gang,DAI Dongshi,et al. Drag Reduction Characteristics on Gas-Liquid Two-Phase Flow Based on Gas Jet[J]. Journal of Propulsion Technology,2015,36(11):1640-1647.)
    [18]张宗卫,郑东生,张盛辉,等. R141b在矩形微尺度通道中的两相流传热特性[J].航空动力学报,2018,33(8):1793-1800.
    [19]付鑫,张鹏,包乾,等.微通道热沉内液氮流动沸腾的换热特性[J].工程热物理学报,2011,32(5):811-815.
    [20]胡丽琴,罗小平,廖寿学.矩形微细通道纳米流体沸腾流动阻力特性研究[J].中南大学学报(自然科学版),2014,45(7):2209-2216.
    [21] Yang Q,Shu B,Wang J,et al. Experimental Investigation on Flow Boiling Heat Transfer and Flow Patterns in a Single Micro-Channel with Large Mass Velocity[J]. Experimental Thermal and Fluid Science,2018,91:283-291.
    [22] Maxime Ducoulombier. Carbon Dioxide Flow Boiling in a Single Microchannel,Part II:Heat Transfer[J]. Experimental Thermal and Fluid Science, 2011, 35(4):597-611.
    [23] Kline S,Mcclintock F A. Describing Uncertainties in Single-Sample Experiments[J]. Mechanical Engineering,1953,75(1):3-8.
    [24] Li X,Jia L,Dang C,et al. Visualization of R134a Flow Boiling in Micro-Channels to Establish a Novel BubblySlug Flow Transition Criterion[J]. Experimental Thermal and Fluid Science,2018,91:230-244.
    [25] Charnay Romain. Flow Boiling Heat Transfer in Minichannels at High Saturation Temperatures,Part I:Experimental Investigation and Analysis of the Heat Transfer Mechanisms[J]. International Journal of Heat and Mass Transfer,2015,87(2):636-652.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700