基于MODIS雪盖数据的叶尔羌河流域积雪再分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Snow Coverage in Yarkant River Basin Based on MODIS Snow Data
  • 作者:卫仁娟 ; 彭亮 ; 梁川 ; 何英 ; 穆振侠 ; 郑淑文
  • 英文作者:WEI Renjuan;PENG Liang;LIANG Chuan;HE Ying;MU Zhenxia;ZHENG Shuwen;College of Water Resources and Hydropower, State Key Lab.of Hydraulics and Mountain River Eng.,Sichuan Univ.;Sichuan Water Conservancy Vocational and Technical College;College of Water Conservancy & Civil Eng.,Xinjiang Agricultural Univ.;
  • 关键词:叶尔羌河 ; MOD10A2 ; 积雪面积 ; 积雪覆盖率 ; 高程带
  • 英文关键词:Yarkant River basin;;MOD10A2;;snow coverage area;;snow coverage rate;;elevation bands
  • 中文刊名:SCLH
  • 英文刊名:Advanced Engineering Sciences
  • 机构:四川大学水利水电学院水力学与山区河流开发保护国家重点实验室;四川水利职业技术学院;新疆农业大学水利与土木工程学院;
  • 出版日期:2018-11-07 22:58
  • 出版单位:工程科学与技术
  • 年:2018
  • 期:v.50
  • 基金:国家自然科学基金资助项目(51569031;51469034);; 新疆农业大学研究生优质课程建设项目资助(Y210180067);; 四川水利职业技术学院院级科研资助项目(KY2016-20;KY2017-08)
  • 语种:中文;
  • 页:SCLH201806019
  • 页数:7
  • CN:06
  • ISSN:51-1773/TB
  • 分类号:145-151
摘要
高原高寒干旱山区积雪融水是大多数河流的重要补给源,对当地社会经济发展、生态环境等起着举足轻重的作用。以叶尔羌河流域为对象,基于2001—2016年的MOD10A2积雪产品,采用GIS空间分析提取叶尔羌河山区的积雪面积,应用线性趋势分析法,分析不同高程带积雪面积年内及年际变化规律。结果表明:1)流域积雪面积年内变化表现为"积累–消减–积累–消融"的二次过程,春秋季以积累为主,夏季以消融为主,冬季因为风吹雪迁移及升华,积雪面积表现为消减现象;2)以200 m间隔划分流域高程带,1—2月积雪覆盖率随高程呈现一致的平缓上升和下降规律。3、4、11、12月在A区(<3 600 m)呈现微弱上升趋势,B区和C区(3 600~6 000 m)呈现显著上升趋势,D区(>6 000 m)呈现下降趋势。5~10月积雪覆盖率在A区处于消融状态,B区(3 600~4 800 m)积雪覆盖率呈现平缓上升趋势;C区(4 800~6 000 m)积雪覆盖率上升趋势显著,D区积雪覆盖率呈现下降趋势;3)A、B区积雪覆盖率年内变化呈现单峰曲线,积雪的主要补给期在秋、冬季。C、D区积雪覆盖率年内变化曲线呈现"M"型,积雪覆盖率为"积累–消减–积累–消融"的二次过程,冬季因为风吹雪迁移至低海拔山区或升华造成积雪消减,D区因为海拔高,夏季积雪覆盖率为80%左右;4)积雪面积年际变化呈现下降趋势,秋、冬季下降趋势最为明显;5)低海拔区(A、B、C区)内积雪覆盖率年际变化呈现微弱下降趋势;高海拔区(D区)内积雪覆盖率年际变化不大,呈现微弱的上升趋势。
        The snow-melt water is one of the most important supply sources of most rivers in the mountain area of arid area, which plays an important role on the local social and economic development, ecological environment, et al. Based on GIS spatial analysis method, the snow coverage was extracted from MOD10 A2 spanning from 2001 to 2016 in the mountain region of Yarkant River basin. The annual and inter-annual variations of snow coverage in the different elevation zones were analyzed by using linear trend analysis method. The results show that: 1) Accumulation-reduction-accumulation-ablation process was presented in the annual change of the snow coverage. In spring and autumn, the snow accumulated, and it melted in summer. In winter, the snow coverage area was reduced due to the snow migration and sublimation by wind blowing. 2)With elevation interval of 200 m, the snow coverage rate in January and February showed a consistently gentle rise and fall with elevation. In March, April, November and December, it showed the same change trend. In the zone A(<3 600 m), the snow coverage rate showed gentle rise trend with the elevation. In the zone B(3 600~4 800 m) and zone C(4 800~6 000 m), significant rise trend was shown. In the zone D(>6 000 m), it showed a downward trend. From May to October, snow was totally in the melting state in the zone A, and in the gentle rise trend in the zone B and significantly rise trend in the zone C, while decreased trend in the zone D. 3) The annual variations of snow coverage rate in the zone A and zone B showed a unimodal curve, and the main replenishment period was in autumn and winter.In the zone C and zone D, the curve showed "M" type. The accumulation-reduction-accumulation-ablation process was presented, and the snow coverage area was reduced due to the migration to low attitude region and the sublimation by wind blowing in winter. The snow coverage rate was about 80% in the zone D due to the high altitude. 4) The inter-annual variation of snow cover showed a decreasing trend, especially in autumn and winter. 5) The inter-annual variation of the snow area showed a decreasing trend in low altitude areas(zone A, B and C), while it showed a weak increasing trend in high altitude(zone D).
引文
[1]Viviroli D,Dürr H H,Messerli B,et al.Mountains of the world,water towers for humanity:Typology,mapping,and global significance[J].Water Resources Research,2007,43(7):685-698.
    [2]Li Peiji.Changes of snow water resources in Northwest China in 1951-1997[J].Science in China(Series D),1999,29(1):63-69.[李培基.1951-1997年中国西北地区积雪水资源的变化[J].中国科学(D辑),1999,29(1):63-69.]
    [3]Brown R D,Braaten R O.Spatial and temporal variability of Canadian monthly snow depths,1946-1995[J].AtmosphereOcean,1998,36(1):37-54.
    [4]Déry S J,Brown R D.Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback[J].Geophysical Research Letters,2007,34(L22504):1-6.
    [5]Flanner M,Shell K,Barlage M,et al.Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008[J].Nature Geoscience,2011,4(3):151-155.
    [6]Yang Zhigang,Da Wa,Chu Duo,et al.Spatiotemporal variations of snow cover on the Tibetan Plateau over the last 15years[J].Remote Sensing Technology and Application,2017,32(1):27-36.[杨志刚,达娃,除多.近15年青藏高原积雪覆盖时空变化分析[J].遥感技术与应用,2017,32(1):27-36.]
    [7]Wang Mingzu.Spatio-temporal change of snow cover in the Tibetan Plateau and its relation to the climate factors in recent 15 years[D].Shanghai:East China Normal University,2016.[王明祖.青藏高原近15年积雪时空变化及其与气候因子关系研究[D].上海:华东师范大学,2016.]
    [8]Hu Haoran,Wu Qing.Interdecadal variations of snow cover and their relations with snowfall and air temperature over East of Qinghai-Tibetan Plateau in last 44 years[J].Plateau and Mountain Meteorology Research,2016,36(1):38-43.[胡豪然,伍清.近44年青藏高原东部积雪的年代际变化特征及其与降雪和气温的关系[J].高原山地气象研究,2016,36(1):38-43.]
    [9]Pu Z,Xu L,Salomonson V V.MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau[J].Geophysical Research Letters,2007,34:L06706.
    [10]Huang Xiaodong,Zhang Xuetong,Li Xia,et al.Accuracy analysis of MODIS snow products of MOD10A1 and MOD10A2 in Northern Xinjiang Area[J].Journal of Glaciology and Geocryology,2007,29(5):722-729.[黄晓东,张学通,李霞,等.北疆牧区MODIS积雪产品MOD10A1和MOD10A2的精度分析与评价[J].冰川冻土,2007,29(5):722-729.]
    [11]Wang X,Xie H,Liang T.Evaluation of MODIS snow cover and cloud mask and its application in Northern Xinjiang,China[J].Remote Sensing of Environment,2008,112(4):1497-1513.
    [12]Yan Wei,Liu Jingshi,Luo Guangming,et al.Snow cover area changes in the Yurungkax River basin of West Kunlun mountains during 2000-2013 using MODIS data[J].Progress in Geography,2014,33(3):315-325.[颜伟,刘景时,罗光明,等.基于MODIS数据的2000-2013年西昆仑山玉龙喀什河流域积雪面积变化[J].地理科学进展,2014,33(3):315-325.]
    [13]Cui Caixia,Wei Rongqing,Li Yang.Long-term change of seasonal snowcover and its effects on runoff volume in the upper reaches of the Tarim River[J].Arid Land Geography,2005,28(5):569-573.[崔彩霞,魏荣庆,李杨.塔里木河上游地区积雪长期变化趋势及其对径流量的影响[J].干旱区地理,2005,28(5):569-573.]
    [14]Zheng W L,Du J K,Zhou X B,et al.Vertical distribution of snow cover and its relation to temperature over the Manasi River basin of Tianshan Mountains,Northwest China[J].Journal of Geographical Sciences,2017,27(4):403-419.
    [15]Peng Liang,Ao Zhigang,Chen Jianjiang,et al.Design and application of monitoring and early warning to Kyagar Glacier Lake in the Karakorum Mountain[J].Journal of Water Resources&Water Engineering,2014,25(5):124-131.[彭亮,敖志刚,陈建江,等.喀喇昆仑山克亚吉尔冰川湖监测预警设计与应用[J].水资源与水工程学报,2014,25(5):124-131.]
    [16]王世江.中国新疆河湖全书[M].北京:中国水利水电出版社,2010:291-298.
    [17]Kulu Bayi,Hu Linjin,Chen Jianjiang,et al.Advances in research on sediment issues of flows with vegetation in China[J].Yellow River,2015,37(4):29-32.[库路巴依,胡林金,陈建江,等.基于SWAT模型的叶尔羌河山区融雪径流模拟[J].人民黄河,2015,37(4):29-32.]
    [18]Zhao Lu,Liang Chuan,Cui Ningbo,et al.Attribution analyses of ET0 change in hilly area of central Sichuan in recent 60 years[J].Journal of Hydraulic Engineering,2013,44(2):183-190.[赵璐,梁川,崔宁博,等.川中丘陵区ET0近60年变化成因研究[J].水利学报,2013,44(2):183-190.]
    [19]He Liye.Study on the classification of snow cover and influencing factors in West China[D].Nanjing:Nanjing University of Information Science&Technology,2011.[何丽烨.中国西部积雪类型划分及影响因子分析[D].南京:南京信息工程大学,2011.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700