可调谐VCSEL的低应力MEMS悬臂结构设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of low stress MEMS cantilever structure with tunable VCSEL
  • 作者:裴丽娜 ; 邹永刚 ; 石琳琳 ; 王小龙 ; 范杰 ; 王海珠
  • 英文作者:Pei Lina;Zou Yonggang;Shi Linlin;Wang Xiaolong;Fan Jie;Wang Haizhu;National Key Laboratory of High-power Semiconductor Lasers, Changchun University of Science and Technology;
  • 关键词:MEMS ; 米塞斯应力 ; 蝴蝶结 ; 可调谐VCSEL
  • 英文关键词:MEMS;;von Mises stress;;bowknot;;tunable VCSEL
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:长春理工大学高功率半导体激光国家重点实验室;
  • 出版日期:2018-12-27 15:19
  • 出版单位:红外与激光工程
  • 年:2019
  • 期:v.48;No.294
  • 基金:吉林省科技发展计划项目(20180519018JH)
  • 语种:中文;
  • 页:HWYJ201904033
  • 页数:7
  • CN:04
  • ISSN:12-1261/TN
  • 分类号:229-235
摘要
针对GaAs基和InP基材料的波长可调谐垂直腔面发射激光器(VCSEL)中微机电系统(MEMS)应力集中引起结构损坏的问题开展研究。设计了蝴蝶结状MEMS悬臂结构,在保证最大位移不变的情况下,降低了悬臂固定端所受的米塞斯应力,提高了器件的可靠性。采用COMSOL软件对蝴蝶结状悬臂结构的各项参数对力学特性的影响进行了优化与分析。结果表明:优化后的蝴蝶结状MEMS悬臂结构固定端的最大米塞斯应力相比于等截面状悬臂结构最大降低了64%,对于GaAs基材料的蝴蝶结状MEMS波长可调谐VCSEL自由光谱范围可达45 nm。
        The structural damage caused by micro-electro-mechanical system(MEMS) stress concentration in tunable vertical cavity surface emitting lasers(VCSEL) of GaAs-based and InP-based materials was studied. A bowknot MEMS cantilever structure was designed to reduce the von Mises stress at the fixed end of the cantilever and ensure the reliability of the device while ensuring the maximum displacement was invariable. The COMSOL software was used to optimize and analyze the influence of various parameters of the bowknot cantilever structure on the mechanical properties. The results show that the maximum von Mises stress at the fixed end of the optimized bowknot MEMS cantilever structure is reduced by 64% compared to the equal-section cantilever structure. The free spectral range of a bowknot MEMS wavelength-tunable VCSEL for GaAs-based materials is up to 45 nm.
引文
[1] Maute M, Kogel B, Bohm G, et al. MEMS-tunable 1.55-/splmu/m VCSEL with extended tuning range incorporating a buried tunnel junction[J]. IEEE Photonics Technology Letters, 2006, 18(5):688-690.
    [2] Levallois C, Verbrugge V, Dupont L, et al. 1.55μm optically pumped tunable VCSEL based on a nano-polymer dispersive liquid crystal phase modulator[C]//Proceedings of SPIE-The International Society for Optical Engineering,2006, 6185:61850W.
    [3] Suzuki H, Fujiwara M, Iwatsuki K. Application of superDWDM technologies to terrestrial terabit transmission systems[J]. Journal of Lightwave Technology, 2006, 24(5):1998-2005.
    [4] Sun D C, Fan W J, Kner P, et al. Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure[J].IEEE Photonics Technology Letters, 2004, 16(3):714-716.
    [5] Chang-Hasnain C J. Tunable VCSEL[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6):978-987.
    [6] Jiang Guoqing, Xu Chen, Xie Yiyang, et al. Fabrication of proton-implanted photonic crystalvertical cavity surface emitting laser[J]. Infrared and Laser Engineering, 2016, 45(12):1205001.(in Chinese)
    [7] Michael C Y Huang, Kan Bun Cheng, Ye Zhou, et al.Monolithic Integrated Piezoelectric MEMS-TunableVCSEL[J].IEEE Journal of Selected Topics in Quantum Electronics,2007, 13(2):374-380.
    [8] Jimyung Kim, Akihiko Shinya, Kengo Nozaki, et al. Narrow linewidth operation of buried-heterostructure photonic crystal nanolaser[J]. Optics Express, 2012, 20(11):11643-11651.
    [9] Guan Baolu, Zhang Jinglan, Ren Xiuguan, et al. Micronano-optical machine system tunable wavelength vertical cavity surface emitting lasers with wide tunable range[J].Acta Physica Sinica, 2011, 60(3):034206.(in Chinese)
    [10] ERIN E F, PAUL E L. MEMS fatigue testing to study nanoscale material response[C]//Proceedings of SEM Annual Conference&Exposition on Experimental and Applied Mechanics, 2002:233-235.
    [11] Zhang Wenming, Meng Guang. Reliability of MEMS and its failure analysis[J] Journal of Mechanical Strength, 2005, 27(6):855-859.(in Chinese)
    [12] Pan J T. Me s and reliability[D]. US:Carnegie Mellon University, 1999.
    [13] Chen Huifa. Elasticity and Plasticity[M]. Beijing:China Architecture&Building Press, 2005.(in Chinese)
    [14] Tian Kun, Zou Yonggang, Jiang Xiaowei, et al. Wavelength tuning range of inter cavity subwavelength grating MEMS VCSELs[J]. Chinese Journal of Lasers, 2016, 43(7):0701009.(in Chinese)
    [15] Bu Chao, Nie Weirong, Xu Anda, et al. Shock reliability enhancement by flexible stop for MEMS inertial switch[J].Optics and Precision Engineering, 2017, 25(1):123-121.(in Chinese)
    [16] Lin Xiezhao, Ying Ji, Chen Zichen. Macro modeling method for electrostatical drive silicon diaphragm[J]. Optics and Precision Engineering, 2008, 16(5):839-846.(in Chinese)
    [17] Gupta R K. Electrostatic pull-in structure design for in-situ mechanical property measurements of microelectromechanical systems(MEMS)[D]. US:MIT, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700