针刺密度对三维碳毡增强树脂炭复合材料力学性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Needle Density on Mechanical Properties of Three-dimensional Carbon Felt Reinforced Resin-based Carbon Composites
  • 作者:樊凯 ; 卢雪峰 ; 张典堂 ; 钱坤
  • 英文作者:FAN Kai;LU Xuefeng;ZHANG Diantang;QIAN Kun;Key Laboratory of Eco-Textiles,Ministry of Education,Jiangnan University;
  • 关键词:针刺密度 ; 树脂炭复合材料 ; 力学性能 ; 破坏机理
  • 英文关键词:needle density;;resin-based carbon composites;;mechanical properties;;failure mechanism
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:江南大学生态纺织教育部重点实验室;
  • 出版日期:2019-06-26
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:“十三五”国家重点研发计划项目(2016YFC-0304301;2016YFB0303200);; 江苏省科技成果转化项目(BA2016170);; 中央高校基本科研业务费专项资金(JUSRP51718A);; 江苏省研究生科研创新计划项目(KYCX18-1836);; 江苏高校优势学科建设工程资助项目(PAPD)~~
  • 语种:中文;
  • 页:CLDB201914032
  • 页数:6
  • CN:14
  • ISSN:50-1078/TB
  • 分类号:172-177
摘要
采用具有不同针刺密度的网胎层/无纬布叠层碳纤维针刺毡为预制体,以酚醛树脂为先驱体,通过液相浸渍炭化工艺(LPI)制备针刺碳毡增强树脂炭复合材料。通过三点弯曲和压缩试验研究了碳毡针刺密度对树脂炭复合材料力学性能的影响,并探讨了针刺碳毡增强树脂炭复合材料的损伤破坏机制。结果表明:当采用密度为0. 4 g/cm~3的针刺碳毡时,针刺密度会对碳毡的孔径分布产生影响,影响其浸渍炭化过程,并对树脂炭复合材料的力学性能有较大影响。当针刺深度为13 mm、针刺密度控制在20~50针/cm~2时,复合材料的弯曲性能先增强后下降,并在针刺密度为40针/cm~2时达到最高。随着针刺密度的增加,复合材料的横向压缩性能基本不变,纵向压缩性能逐渐增强。针刺碳毡增强树脂炭复合材料弯曲和压缩破坏特征分别为脆性断裂和塑性断裂,弯曲主要破坏模式为底部倒"V"型开裂破坏;横向压缩主要有三种破坏方式:分层破坏、层间剪切破坏及树脂炭压溃破坏。随着针刺密度的增加,纵向压缩破坏失效模式由层间分层及剪切破坏向端头多层纤维折断模式破坏转变。
        Needled carbon felt reinforced resin-based carbon composites was prepared by liquid impregnation-carbonization process( LPI) using nonwoven cloth/web needle carbon fiber felt with different needle-punching densities as preform,and phenolic resin as precursor. Three-point bending and compression tests were employed to study the influence of needle density on the mechanical properties of resin-based carbon composites. The damage and failure mechanisms of needled carbon felt reinforced resin-based carbon composites were also discussed. The results show that the needle-punching density has a great influence on the pore size distribution of preform,it affects the impregnation-carbonization process,which consequently result in the mechanical properties of the resin-based carbon composites when the density of needled carbon felt is0. 4 g/cm~3. In the meantime,when the needle depth is 13 mm,with the needle density increasing from 20 to 50 punch/cm~2,the flexural properties of composites increase firstly and then decrease. When the needle density is 40 punch/cm~2,the flexural properties of composites reach the highest. The main failure mode of bending is cracking failure of the bottom inverted"V"type. In addition,with the increase of the needle density,the transverse compression performance of the composite is basically unchanged,and the longitudinal compression performance is gradually improved. There are three failure modes of transverse compression such as stratification and interlayer failure,interlayer shear failure and resinbased carbon crushing failure. With the increase of needle density,the failure mode of longitudinal compression of composites is changed from interlayer delamination and shear failure to fracture failure of multilayer fibers.
引文
1 Yi X S,Du S Y,Zhang L T. Composite materials handbook,Chemical Industry Press,China,2009(in Chinese).益小苏,杜善义,张立同.复合材料手册,化学工业出版社,2009.
    2 Huang B Y,Xiong X. Manufacturing of carbon/carbon composites for aircraft brakes,Hunan Science&Technology Press,China,2007(in Chinese).黄伯云,熊翔.高性能炭/炭航空制动材料的制备技术,湖南科学技术出版社,2007.
    3 Liang S D,Effect of preform structure on flat CVI process and material properties. Master’s Thesis,Central South University,China,2011(in Chinese).梁世栋.预制体结构对平板CVI过程及材料性能的影响.硕士学位论文,中南大学,2011.
    4 Zhang J. Preparation and properties study of variable density preform C/C composite materials. Master’s Thesis,Jiangnan University,China,2014(in Chinese).张洁.变密度预制体C/C复合材料的制备及其性能研究.硕士学位论文,江南大学,2014.
    5 Chen X M,Li C,Zhang C Y,et al. Composites Part A,2016,85,12.
    6 Zhang J C,Luo R Y,Qiao X,et al. Materials Science&Engineering A,2011,528(15),5002.
    7 Li D S,Duan H W,Wang W,et al. Composite Structures,2017,172,229.
    8 Hu Y J,Luo R Y,Zhang Y F,et al. Materials Science&Engineering A,2010,527(3),797.
    9 Chen T F,Liao J Q,Liu G S,et al. Carbon,2003,41(5),993.
    10 Zheng J H,Li H J,Cui H,et al. Journal of Solid Rocket Technology,2017,40(2),221.
    11 Xie J B. Parametric modeling of needling process and constitutive relationship of needled composite. Ph.D. Thesis,Harbin Institute of Technology,China,2016(in Chinese).谢军波.针刺预制体工艺参数建模及复合材料本构关系研究.博士学位论文,哈尔滨工业大学,2016.
    12 KlucˇákováM. Acta Materialia,2005,53(14),3841.
    13 Jiang J,Xu Y D,Cai Y Z,et al. Acta Materiae Compositae Sinica,2009,26(5),105(in Chinese).姜娟,徐永东,蔡艳芝,等.复合材料学报,2009,26(5),105.
    14 Li Z,Long Y,Li Y,et al. Ceramics International,2016,42(8),9527.
    15 Zhang P. Microstructure modeling and prediction of effective properties of3 D needled C/C composites. Master’s Thesis,Northwestern Polytechnical University,China,2016(in Chinese).张盼.三维针刺C/C复合材料的微结构建模及力学性能预测.硕士学位论文,西北工业大学,2016.
    16 Zhang X H,Li H J,Hao Z B,et al. Journal of Inorganic Materials,2007,22(5),963(in Chinese).张晓虎,李贺军,郝志彪,等.无机材料学报,2007,22(5),963.
    17 Lu X F,Xiao P. Ceramics International,2014,40(7),10705.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700