半胱氨酸分子手性转变及水分子的催化机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Chiral Transformation of Cysteine Molecules and Catalytic Mechanism of Water Molecules
  • 作者:王佐成 ; 范志琳 ; 程彦明 ; 梅泽民
  • 英文作者:WANG Zuocheng;FAN Zhilin;CHENG Yanming;MEI Zemin;Physics Department,Baicheng Normal College;College of Chemistry and Materials,Liaoning Normal University;Optoelectronic Information College,Changchun University of Science and Engineering;College of Chemistry,Baicheng Normal College;
  • 关键词:手性 ; 半胱氨酸 ; 密度泛函理论 ; 过渡态 ; 微扰理论
  • 英文关键词:chiral;;cysteine;;density functional theory;;transition state;;perturbation theory
  • 中文刊名:WHDY
  • 英文刊名:Journal of Wuhan University(Natural Science Edition)
  • 机构:白城师范学院物理学院;辽宁师范大学化学与材料学院;长春理工大学光电信息学院;白城师范学院化学学院;
  • 出版日期:2016-06-23 14:07
  • 出版单位:武汉大学学报(理学版)
  • 年:2016
  • 期:v.62;No.278
  • 基金:吉林省科技发展计划资助项目(20130101131JC)
  • 语种:中文;
  • 页:WHDY201604011
  • 页数:7
  • CN:04
  • ISSN:42-1674/N
  • 分类号:65-71
摘要
采用密度泛函理论的B3LYP方法和微扰理论的MP2方法研究了单体半胱氨酸分子手性转变机理及水分子对氢迁移反应的催化作用.根据研究结果,半胱氨酸分子手性转变反应有4个通道:a通道是手性C上的H只以氨基N为桥转移至手性C另一侧;b通道是手性C上的H依次以羰基O和氨基N为桥转移至手性碳另一侧;c通道是手性C上的H只以羰基O为桥转移至手性碳另一侧;d通道是手性C上的H以羟基O为桥转移至手性碳另一侧.势能面计算表明:a通道为优势反应通道,最高能垒254.6kJ·mol~(-1);1个水分子及2个水分子构成的链作为H迁移媒介,使最高能垒降至163.2和126.2kJ·mol~(-1),说明水分子对H迁移反应具有较好的催化作用.
        The chiral transformation mechanism of the cysteine monomer and the catalytic effect of water molecules and hydroxyl radicals on the hydrogen transfer reaction were studied based on the B3 LYP methods of density functional theory and the MP2 methods of perturbation theory.The study of reaction channel showed that there were four channels a,b,c and d in the chiral transformation reaction.In channel a,the hydrogen of chiral carbon used the imino N as a bridge and was transferred to the other side of chiral carbon.In channel b,the hydrogen of chiral carbon successively used the carbonyl O and imino N as a bridge and was transferred to the other side of chiral carbon.In channel c,the hydrogen of chiral carbon used the carbonyl O as a bridge and was transferred to the other side of chiral carbon.In channel d,the hydrogen was firstly transferred in the carbonyl,and then the hydrogen of chiral carbon used the carbonyl O as a bridge and was transferred to the other side of chiral carbon.Calculation of potential energy surface showed that channel a was the most dominant reaction channel with the highest energy barrier of 254.6kJ·mol~(-1).By using the chain composed of one and two water molecules as the hydrogen migration vector,the high-energy barriers were respectively reduced to 163.2kJ·mol~(-1) and 126.2kJ·mol~(-1).The results suggest that water molecules had a better catalysis for hydrogen migration.
引文
[1]陈新谦.新编药物学[M].北京:人民卫生出版社,1982:4831.CHEN X Q.New Materia Medica[M].Beijing:The People’s Health Press,1982:4831(Ch).
    [2]陈敏元.L-半胱氨酸药物及其合成[J].化学工程师,1991,23(5):39-41.CHEN M Y.L-cysteine drugs and its synthesis[J].Chemical Engineer,1991,23(5):39-41(Ch).
    [3]雷绍青.氨基酸在临床上的应用[J].氨基酸杂志,1988(4):26-29.LEI S Q.Application of amino acids in the clinical[J].Journal of Amino Acids,1988(4):26-29(Ch).
    [4]林文修,陈丹,王友泼.电解合成L-半胱氨酸的研究[J].福建化工,1991(2):25-28.LIN W X,CHEN D,WANG Y P,The study of electrolytic synthesis L-cysteine[J].Fujian Chemical,1991(2):25-28(Ch).
    [5]赵建国.氨基酸在食品工业中的应用现状及进展[J].氨基酸杂志,1984(3):32-37.ZHAO J G.Application status and progress of amino acids in the food industry[J].Journal of Amino Acids,1984(3):32-37(Ch).
    [6]宋正选,许晶,郭继兴,等.维生素C注射液抗氧剂的选择[J].西北药学杂志,2003,18(2):75-76.SONG Z X,XU J,GUO J X,et al.The choice of vitamin C injection antioxidants[J].Pharmaceutical Journal of Northwest,2003,18(2):75-76(Ch).
    [7]JULIE S,SYLVAIN B,PIERRE P.Role of D-cysteine desulthydrase in the adaptation of escherichia colito D-cysteine[J].J Biological Chemistry,2001,276(44):40864-40872.
    [8]周锡梁,梅亚红,兰荣华,等.D-半胱氨酸盐酸盐制备研究[J].氨基酸和生物资源,2007,28(1):39-41.ZHOU X L,MEI Y H,LAN R H,et al.Research on preparation of D-cysteine hydrochloride[J].Amino Acids&BioticResources,2007,28(1):39-41(Ch).
    [9]TSUKAMOTO S,KANEGAE T,NAGOYA T,et al.Effects of amino acids on acute alcohol intoxication in mice-concentra-tions of ethanol,acetaldehyde,acetate and acetone in blood and tissues[J].Arukoru Kenkyuto Yakubutsu Ison,1990,25(5):429-440.
    [10]NAGASAWA T,HOSSONO H,OHKISHI H,et al.Synthesis of D-cysteine-related amino acids by 3-chloro-D-alanine chloride-lyase of pseudomonas putida CR1-1[J].Applied Biochemistry and Biotechnology,1983,8:481-489.
    [11]刘军.(D)-半胱氨酸盐酸盐的研究和开发[D].大连:大连理工大学,2006:15.LIU J.Research and Development of D-Cysteine Hydrochloride[D].Dalian:Dalian University of Technology,2006:15(Ch).
    [12]AMI E,NAKAHARA K,SATO A,et al.Synthesis and antiviral property of allophenylnorstatine-based HIV protease inhibitors incorporating D-cysteine derivatives as P2/P3moieties[J].Bioorganic&Medicinal Chemistry Letters,2007,17(5):4213-4217.
    [13]GILLINE F D,DIAMOND L S.Attachment of entamoeba histolytica to glass in a defined maintenance medium:Specific requirement for cysteine and ascorbic acid[J].Journal of Protozool,1980,27(4),474-478.
    [14]李娟娟,徐光明.L-半胱氨酸包覆ZnS纳米荧光探针测定诺氟沙星的研究[J].药物分析杂志,2010,30(3):361-365.LI J J,XU G M.Study of L-cysteine-capped ZnS nanoparticles as fluorescence probe in the determination of norfloxacin[J].Chinese Journal of Pharmaceutical Analysis,2010,30(3):361-365(Ch).
    [15]李树白,薛勇,张海涛,等.L-半胱氨酸对酪氨酸酶的抑制动力学研究[J].精细化工,2009,26(9):889-893.LI S B,XUE Y,ZHANG H T,et al.Inhibitory kinetics of L-cysteine on tyrosinase activity[J].Fine Chemicals,2009,26(9):889-893(Ch).
    [16]郝雅琼,吴玉清,刘俊秋,等.半胱氨酸在银基底表面吸附机理的拉曼光谱研究[J].光散射学报,2002,14(3):172-175.HE Y Q,WU Y Q,LIU J Q,et al.Surface enhanced raman spectroscopic studies of the monolayer of cysteine on silver mirror[J].Chinese Journal of Light Scattering,2002,14(3):172-175(Ch).
    [17]KAMBO N,UPADHYAY S.Inhibition of{cysteinesurfactant}aggregation in cysteine-cystine transformation by alkaline hexacyanoferrate(Ⅲ):A kinetic study[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,296(1):117-122.
    [18]CAI P Y,ZHOU G H,YANG D C.FTIR FT-Raman and surface enhanced Raman study of S-thyminyl-Lcysteine[J].Spectroscopy and Spectral Analysis,2011,31(5):1274-1278.
    [19]王佐成,刘凤阁,吕洋,等.孤立条件下α-丙氨酸分子手性转变机制的DFT研究[J].吉林大学学报(理学版),2014,52(4):825-830.WANG Z C,LIU F G,LY,et al.The DFT research on the chiral transformaition mechanism of alpha alanine under isolated condition[J].Journal of Jilin University(Science Edition),2014,52(4):825-830(Ch).
    [20]王佐成,高峰,赵衍辉,等.α-丙氨酸分子手性转变反应通道及水分子作用的理论研究[J].浙江大学学报(理学版),2015,42(2):189-197.WANG Z C,GAO F,ZHAO Y H,et al.Theoretical research on the chiral transformation pathway ofα-alanine and effect of water molecules[J].Journal of Zhejiang University(Science Edition),2015,42(2):189-197(Ch).
    [21]刘凤阁,辛春雨,闫红彦,等.气相赖氨酸分子手性转变机制的理论研究[J].武汉大学学报(理学版),2015,61(1):93-98.LIU F G,XIN C Y,YAN H Y,et al.Theoretical research on chiral change mechanism of gaseous lysine molecules[J].Journal of Wuhan University(Natural Science Edition),2015,61(1):93-98(Ch).
    [22]李忠,佟华,王佐成,等.基于氨基作H转移桥梁单体α-Ala的手性转变机理[J].复旦学报(自然科学版),2015,54(5):102-108.LI Z,TONG H,WANG Z C,et al.The chiral transition mechanism of monomerα-alanine based on amino as H transfer bridge[J].Journal of Zhejiang University(Natural Science),2015,54(5):102-108(Ch).
    [23]王佐成,佟华,王丽萍,等.水环境下α-丙氨酸分子手性转变机制的理论研究[J].吉林大学学报(理学版),2015,53(1):134-141.WANG Z C,TONG H,WANG L P,et al.Theoretical research ofα-alanine molecule chiral shift mechanism under the water environment[J].Journal of Jilin University(Science Edition),2015,53(1):134-141(Ch).
    [24]梅泽民,王佐成,赵衍辉,等.水环境下布洛芬分子的手性转变机理[J].吉林大学学报(理学版),2015,53(2):331-339.MEI Z M,WANG Z C,ZHAO Y H,et al.Theoretical research of chiral shift mechanism of ibuprofen molecule under water environment[J].Journal of Jilin University(Science Edition),2015,53(2):331-339(Ch).
    [25]刘凤阁,王佐成,梅泽民,等.水环境下赖氨酸分子的手性转变机理[J].武汉大学学报(理学版),2015,61(5):491-496.LIU F G,WANG Z C,MEI Z M,et al.Theoretical research of chiral shift mechanism of ibuprofen molecule under water environment[J].Journal of Wuhan University(Natural Science Edition),2015,61(5):491-496(Ch).
    [26]BECKE A D.Density-functional thermochemistry.Ⅲ.The role of exact exchange[J].Chemical Physics,1993,98(7):5648-5652.
    [27]PARR R G,YANG W.Density-Functional Theory of Atoms and Molecules[M].New York:Oxford University Press,1994.
    [28]EYRING H.The activated complex and the absolute rate of chemical reaction[J].Chemical Reviews,1935,17(1):65-77.
    [29]GARRETT B C,TRUHLAR D G.Correction generalized transition state theory.Classical mechanical theory and applications to collinear reactions of hydrogen molecules[J].Journal of Physical Chemistry,1979,83(23):3058.
    [30]GARRETT B C,TRUHLAR D G.Criterion of minimum state density in the transition state theory of bimolecular reactions[J].The Journal of Chemical Physics,1979,70(4):1593-1598.
    [31]GONZALEZ C,SCHLEGEL H B.Reaction path following in mass-weighted internal coordinates[J].Journal of Physical Chemistry,1990,94(14):5523-5527.
    [32]ISHIDA K,MOROKUMA K,KOMORNICKI A.The intrinsic reaction coordinate.An ab initio calculation for HNC→HCN and H-+CH4→CH4+H-[J].The Journal of Chemical Physics,1977,66(5):2153-2156.
    [33]徐光宪,黎乐民,王德民.量子化学(中册)[M].北京:科学出版社,1985:962-986.XU G X,LI M L,WANG D M.Quantum Chemistry(middle)[M].Beijing:Science Press,1985:962-986(Ch).
    [34]FRISCH M J,TRUCKS G W,SCHLEGEL H B,et al.Gaussian09.Revision D.01[CP].Pittsburgh:Gaussian Inc,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700