Antioxidant Activity of Sesamol Derivatives and Their Drug Delivery via C60 Nanocage: a Theoretical Study
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Antioxidant Activity of Sesamol Derivatives and Their Drug Delivery via C60 Nanocage: a Theoretical Study
  • 作者:MEYSAM ; Najafi
  • 英文作者:MEYSAM Najafi;Medical Biology Research Center, Kermanshah University of Medical Sciences;
  • 英文关键词:drug delivery;;fullerene;;sesamol;;adsorption energy and water
  • 中文刊名:JGHX
  • 英文刊名:结构化学(英文版)
  • 机构:Medical Biology Research Center, Kermanshah University of Medical Sciences;
  • 出版日期:2019-02-15
  • 出版单位:Chinese Journal of Structural Chemistry
  • 年:2019
  • 期:v.38;No.292
  • 语种:英文;
  • 页:JGHX201902004
  • 页数:6
  • CN:02
  • ISSN:35-1112/TQ
  • 分类号:36-41
摘要
The antioxidant activity of sesamol derivatives and their drug delivery via fullerene were investigated. Fullerene can interact with sesamol derivatives, and their adsorptions were possible from the energetic viewpoint. Adding the NH_2 group to sesamol can improve the sensitivity of sesamol toward fullerene surface. The NH_2 and OMe substitutions increase the antioxidant activity of sesamol. The results can also be used to select novel sesamol derivatives with higher antioxidant activity and higher drug delivery ability.
        The antioxidant activity of sesamol derivatives and their drug delivery via fullerene were investigated. Fullerene can interact with sesamol derivatives, and their adsorptions were possible from the energetic viewpoint. Adding the NH_2 group to sesamol can improve the sensitivity of sesamol toward fullerene surface. The NH_2 and OMe substitutions increase the antioxidant activity of sesamol. The results can also be used to select novel sesamol derivatives with higher antioxidant activity and higher drug delivery ability.
引文
(1)Bolton, J. L.; Trush, M. A.; Penning, T. M.; Dryhurst, G.; Monks, T. J. Role of quinones in toxicology. Chem. Res. Toxicol. 2000, 13, 135–160.
    (2)Buege, J. A.; Aust, S. D. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302–310.
    (3)Moo-Huchin, V. M.; Moo-Huchin, M. I.; Estrada-León, R. J.; Cuevas-Gloryc, L.; Estrada-Motaa, I. A.; Ortiz-Vázquezc, E.; Betancur-Anconad, D.;Sauri-Duchc, E. Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits. Mexico. Food Chem. 2015, 166,17–22.
    (4)Li, X.; Wang, T.; Zhou, B.; Gao, W. Y.; Cao, J. G. G.; Huangc, L. Q. Chemical composition and antioxidant and anti-inflammatory potential of peels and flesh from 10 different pear varieties. Food Chem. 2014, 152, 531–538.
    (5)Cao, G.; Alessio, H. M.; Culter, R. G. Oxygen radical absorbance capacity assay for antioxidant free radicals. Biol. Med. 1993, 14, 303–311.
    (6)Chanda, S.; Dave, R. In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties:an overview.Afr. J. Microbiol. Res. 2009, 3, 981–996.
    (7)Srisayam, M.; Weerapreeyakul, N.; Barusrux, S.; Kanokmedhakul, K. Antioxidant, antimelanogenic, and skin-protective effect of sesamol. J. Cosm.Sci. 2014, 65, 69–79.
    (8)Furumoto, T.; Nishimoto, K. Identification of a characteristic antioxidant, anthrasesamone F, in black sesame seeds and its accumulation at different seed developmental stages. Bio. Scie. Biotech. Biochem. 2016, 80, 350–355.
    (9)Xu,P.;Cai,F.;Liu,X.;Guo,L.Sesamininhibitslipopolysaccharide-inducedproliferationandinvasionthroughthep38-MAPKandNF-κB signaling pathways in prostate cancer cells. Oncol. Reports 2015, 33, 3117–3123.
    (10)Wright, J. S.; Johnson, E. R.; Dilabio, G. A. Predicting the activity of phenolic antioxidants:?theoretical method, analysis of substituent effects, and application to major families of antioxidants. J. Am. Chem. Soc. 2001, 123, 1173–1183.
    (11)Zhang,H.Y,Ji,H.F.S–Hprotondissociationenthalpiesofthiophenoliccationradicals:aDFTstudy.J.Mol.Struct:(Theochem.)2003,663,167–174.
    (12)Foti,M.C.;Daquino,C.;Geraci,C.Electron-transferreactionofcinnamicacidsandtheirmethylesterswiththeDPPH·radicalinalcoholic solutions. J. Org. Chem. 2004, 69, 2309–2314.
    (13)Litwinienko, G.; Ingold, K. U. Abnormal solvent effects on hydrogen atom abstraction. 3. Novel kinetics in sequential proton loss electron transfer chemistry. J. Org. Chem. 2005, 70, 8982–8990.
    (14)Wang, L. F.; Zhang, H. Y. A theoretical study of the different radical-scavenging activities of catechin, quercetin, and a rationally designed planar catechin. Bioorg. Chem. 2005, 33, 108–115.
    (15)Guitard,R.;Nardello-Rataj,V.;Aubry,J.M.Theoreticalandkinetictoolsforselectingeffectiveantioxidants:applicationtotheprotectionof omega-3 oils with natural and synthetic phenols. Int. J. Mol. Sci. 2016, 17, 1220–1225.
    (16)Beghdad, M. C.; Benammar, C.; Bensalah, F.; Sabri, F. Z.; Belarbi, M.; Chemat, F. Antioxidant activity, phenolic and flavonoid content in leaves,flowers, stems and seeds of mallow from north western of algeria. Afr. J. Biotechnol. 2014, 13, 486–491.
    (17)Machado, M.; Mota, R.; Piquini, P. Electronic properties of BN nanocones under electric fields. Microelectron. J. 2003, 34, 545–547.
    (18)Halpern, J. B.; Bello, A.; Gilcrease, A.; Harris, G. L.; He, M.; Biphasic GaN nanowires:growth mechanism and properties. Microelectron. J. 2009,40, 316–318.
    (19)Masoudipour, E.; Kashanian, S.; Maleki, N. A targeted drug delivery system based on dopamine functionalized nano graphene oxide. Chem. Phys.Lett. 2017, 668, 56–63.
    (20)Akbar, S.; Anwar, A.; Ayish, A. Phytantriol based smart nano-carriers for drug delivery applications. Europ. J. Pharm. Scie. 2017, 101, 31–42.
    (21)Beheshtian, J.; Kamfiroozi, M.; Bagheri, Z.; Ahmadi A. B12N12 nano-cage as potential sensor for NO2 detection. Chin. J. Chem. Phys. 2012, 25,60–64.
    (22)Ahmadi, A.; Beheshtian, J.; Kamfiroozi, M. Benchmarking of ONIOM method for the study of NH3 dissociation at open ends of BNNTs. J. Mol.Model 2012, 18, 1729–1734.
    (23)Najafi,M.;Najafi,M.;Najafi,H.DFT/B3LYPstudyofthesubstituenteffectsonthereactionenthalpiesoftheantioxidantmechanismsof indole-3-carbinol derivatives in the gas-phase and water. Comp. Theor. Chem. 2012, 999, 34–42.
    (24)Yang,K.;Feng,L.;Liu,Z.Stimuliresponsivedrugdeliverysystemsbasedonnano-grapheneforcancertherapy.Adv.DrugDeliv.2016,105,228–241.
    (25)Koroleva, M. Y.; Nagovitsina, T. Y.; Bidanov, D. Y.; Gorbachevski, O. S.; Yurtov, E. V. Nano and microcapsules as drug-delivery systems. Reso.Effi. Techn. 2016, 2, 233–239.
    (26)Neeraj, V.; Taehong, M.; Manish, B.; Aakruti, G.; Indrajit, R. Neutrophil targeted nano-drug delivery system for chronic obstructive lung diseases.Biol. Med. 2016, 12, 2415–2427.
    (27)Dinadayalane,T.C.;Murray,J.S.;Conch,M.C.Reactivitiesofsiteson(5,5)single-walledcarbonnanotubeswithandwithoutaStoneWales defect. J. Chem. Theory Comp. 2010, 6, 1351–1357.
    (28)Schmidt, M.; Baldridge, K.; Boatz, J.; Elbert, S.; Gordon, M. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14,1347–1363.
    (29)Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 2004,25, 1463–1471.
    (30)Shokuhi, A.; Ayub, K. Ni adsorption on Al12P12 nano-cage:a DFT study. J. Alloy. Comp. 2016, 678, 317–324.
    (31)Andzelm, J.; Kolmel, C. Incorporation of solvent effects into density functional calculations of molecular energies and geometries. J. Chem. Phys.1995, 103, 9312–9320.
    (32)Gan, L. H.; Zhao, J. Q. Theoretica l investigation of[5, 5],[9, 0] and[10, 10] closed WCNTs. Physica. E 2009, 41, 1249–1252.
    (33)Beheshtian,J.;Peyghan,A.A.;Bagheri,A.AdsorptionanddissociationofCl2moleculeonZnOnanocluster.Appl.Surf.Sci.2012,258,8171–8176.
    (34)Boys, S. F.; Bernardi, F. The calculation of small molecular interact ions by the separate total energies Mol. Phys. 1970, 19, 553–566.
    (35)Arab, A.; Habibzadeh, M. Comparative hydrogen adsorption on the pure Al and mixed Al–Si nano clusters:a first principle DFT study. Comput.Theor. Chem. 2015, 1068, 52–56.
    (36)Bahrami,A.;Seidi,S.;Baheri,T.Afirst-principlesstudyontheadsorptionbehaviorofamphetamineonpristine,P-andAl-dopedB12N12nano-cages. Superl. Micros. 2013, 64, 265–273.
    (37)Najafi, M.; Najafi, M.; Najafi, H. Theoretical study of the substituent effects on the reaction enthalpies of the antioxidant mechanisms of stobadine derivatives in the gas-phase and water, J. Theor. Comput. Chem. 2013, 12, 1250116.
    (38)Najafi, M.; Najafi, M.; Najafi, H. DFT/B3LYP study of the substituent effects on the reaction enthalpies of the antioxidant mechanisms of sesamol derivatives in the gas phase and water. Can. J. Chem. 2012, 90, 915–926.
    (39)Mahdavinia, G. H.; Amani, A. M.; Sepehrian, H. MCM-41-SO3H as a highly efficient sulfonic acid nanoreactor for the rapid and green synthesis of some novel highly substituted imidazoles under solvent-free condition. Chin. J. Chem.2102,03, 703–708.
    (40)Rostamizadeh,S.;Amani,A.M.;Aryan,R.;Ghaieni,H.R.;Norouzi,L.Veryfastandefficientsynthesisofsomenovelsubstituted2-arylbenzimidazoles in water using ZrOCl2 NH2O on montmorillonite K10 as catalyst. Monatsh. Chem. 2009, 140, 547–552.
    (41)Rostamizadeh,S.;Amani,A.M.;Mahdavinia,G.H.;Shadjou,N.Silicasupportedammoniumdihydrogenphosphate(NH4H2PO4/SiO2):amild,reusable and highly efficient heterogeneous catalyst for the synthesis of 14-aryl-14-H-dibenzo[a,j]xanthenes. Chin. Chem. Lett. 2009, 20,779–783.
    (42)Rostamizadeh, S.; Aryan, R.; Ghaieni, H. R.; Amani, A. M. Aqueous NaHSO4 catalyzed regioselective and versatile synthesis of 2-thiazolamines.Monatsh. Chem. 2008, 139, 1241–1245.
    (43)Mahdavinia,G.H.;Rostamizadeh,S.;Amani,A.M.;Sepehrian,H.Fastandefficientmethodforthesynthesisof2-arylbenzimidazolesusing MCM-41-SO3H. Heterocycl. Commun. 2012, 18, 33–37.
    (44)Rostamizadeh, S.; Aryan, R.; Ghaieni, H. R.; Amani, A. M. An efficient one-pot procedure for the preparation of 1,3,4-thiadiazoles in ionic liquid[Bmim]BF4 as dual solvent and catalyst. Heteroat. Chem. 2008, 19, 320–324.
    (45)Rostamizadeh,S.;Aryan,R.;Ghaieni,H.R.;Amani,A.M.Efficientsynthesisof1,3,4-thiadiazolesusinghydrogenbonddonor(thio)urea derivatives as organocatalysts. J. Heterocycl. Chem. 2010, 47, 616–623.
    (46)Rostamizadeh, S.; Abdollahi, F.; Shadjou, N.; Amani, A. M. MCM-41-SO3H:a novel reusable nanocatalyst for synthesis of amidoalkyl naphthols under solvent-free conditions. Monatsh. Chem. 2013, 144, 1191–1196.
    (47)Amani, A. M. Synthesis and biological activity of piperazine derivatives of phenothiazine. Drug Res. 2014, 65, 5–8.
    (48)Mahdavinia, G. H.;Rostamizadeh, S.; Amani, A. M.;Mirzazadeh, M. NH4H2PO4/SiO2:a recyclable, efficientheterogeneous catalyst for crossed aldol condensation reaction. Green Chem. Lett. Rev. 2012, 5, 255–281.
    (49)Habibi,A.;Tarameshloo,Z.;Rostamizadeh,S.;Amani,A.M.Efficientsynthesisof3-aminoimidazo[1,2-a]pyridinesusingsilica-supported perchloric acid(HClO4-SiO2)as a novel heterogenous catalyst. Lett. Org. Chem. 2012, 9, 155–159.
    (50)Rostamizadeh,S.;Ghaieni,H.R.;Aryan,R.;Amani,A.M.One-potsynthesisof3,5-disubstituted1,2,4-oxadiazolesdirectlyfromnitrileand hydroxylaminehydrochlorideundersolvent-freeconditionsusingpotassiumfluorideascatalystandsolidsupport.Synth.Commun.2010,40,3084–3092.
    (51)Mousavi,S.M.;Hashemi,S.A.;Amani,A.M.;Jahandideh,S.;Mojoudi,F.Polyethyleneterephthalate/acrylbutadienestyrenecopolymer incorporated with oak shell, potassium sorbate and egg shell nanoparticles for food packaging applications:control of bacteria growth, physical and mechanical properties. Poly. Rene. Resou. 2017, 8, 177–196.
    (52)Mousavi,S.M.;Hashemi,S.A.;Arjmand,M.;Sharif,F.;Jahandideh,S.Octadecylaminefunctionalizedgrapheneoxidetowardshydrophobic chemical resistant epoxy nanocomposites. Chem. Select. 2018, 3, 7200–7207.
    (53)Fathollahi, M.; Rostamizadeh, S.; Amani, A. M. A clean, mild, and efficient preparation of aryl 14H-benzo[a,j]xanthene leuco-dye derivatives via nanocatalytic MCM-41-SO3H under ultrasonic irradiation in aqueous media. Comb. Chem. High Throughput Screen 2018, 21, 5–13.
    (54)Amani, A. M. Synthesis, characterization and biological activities of some novel isatin derivatives. Bulg. Chem. Commun. 2014, 46, 795–800.
    (55)Hashemi,S.A.;Mousavi,S.M.;Faghihi,R.;Sina,S.;Amani,A.M.Leadoxide-decoratedgrapheneoxide/epoxycompositetowardsX-ray radiation shielding. Radiat. Phys. Chem. 2018, 146, 77–85.
    (56)Beheshtkhoo, N.; Kouhbanani, M. A. J.; Savardashtaki, A.; Amani, A. M.; Taghizadeh, S. Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material. Appl. Phys. a Mater. Sci. Process 2018, 124, 363–367.
    (57)Rostamizadeh, S.; Amani, A. M.; Shadjou, N. Silica phosphoric acid(SPA)as a highly active, reusable, heterogeneous catalyst for the synthesis of2-amino/anilino-5-aryl-1,3,4-thiadiazine bromide derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2012, 187, 238–244.
    (58)Amani,A.M.Synthesis,characterizationandantibacterialandantifungalevaluationofsomepara-quinonederivatives.DrugRes.2014,64,420–423.
    (59)Rostamizadeh,S.;Shadjou,N.;Amani,A.M.;Aryan,R.A.Mildandhighlyefficientmethodforthesynthesisof5-aryl-(N-phenyl-)6H-1,3,4-thiadiazin-2-aminium salts using reusable heterogeneous catalysts. J. Heterocycl. Chem. 2008, 45, 1761–1764.
    (60)Amin, M.; Zarandi, F.; Krishna, M. Spontaneous imbibition of liquid in glass fiber wicks, Part II:validation of a diffuse‐front model. AIChE J. 2018,634, 306–315.
    (61)Amin,M.;ZarandiKrishna,F.;PillaiAdam,M.;Kimmel,S.Spontaneousimbibitionofliquidsinglass‐fiberwicks.PartI:usefulnessofa sharp‐front approach. AIChE J. 2018, 64 294–305.
    (62)Pirbazari, A. E.; Monazzam, P.; Kisomi, B. F. Co/TiO2 nanoparticles:preparation, characterization and its application for photocatalytic degradation of methylene blue. Desalin. Water Treat. 2017, 63, 283–292.
    (63)EbrahimianPirbazari,A.;FakhariKisom,B.;GhamangizKhararoodi,M.Anionicsurfactant-modifiedricestrawforremovalofmethyleneblue from aqueous solution. Desalin Water Treat. 2016, 57, 18202–18216.
    (64)Seyedi, S. H.; Saray, B. N.; Nobari, M. R. H. Using interpolation scaling functions based on Galerkin method for solving non-Newtonian fluid flow between two vertical flat plates. App. Math. Comput. 2015, 269, 488–496.
    (65)Rafatijo, H.; Thompson, D. L. General application of Tolman's concept of activation energy. J. Chem. Phys. 2017, 147, 224111.
    (66)Shao, Z.; Wu, P.; Gao, Y.; Gutman, I.; Zhang, X. On the maximum ABC index of graphs without pendent vertices. App. Math. Comput. 2017, 315,298–312.
    (67)Shao, Z.; Wu, P.; Zhang, X.; Dimitrov, D.; Liu, J. On the maximum ABC index of graphs with prescribed size and without pendent vertices. IEEE Access 2018, 6, 27604–27616.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700