新型Fe-Cr-Ni耐热合金的应变诱导析出行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Strain-induced precipitation behavior of new Fe-Cr-Ni heat-resistant alloy
  • 作者:张盼盼 ; 程晓农 ; 罗锐 ; 刘天 ; 高天明
  • 英文作者:ZHANG Pan-pan;CHENG Xiao-nong;LUO Rui;LIU Tian;GAO Tian-ming;School of Materials Science and Engineering,Jiangsu University;Nantong Research Institute of Materials Engineering,Nanjing University;
  • 关键词:铁镍基合金 ; 应力松弛 ; PTT曲线 ; 析出相
  • 英文关键词:Fe-Ni based alloy;;stress relaxation;;PTT curve;;precipitate
  • 中文刊名:IRON
  • 英文刊名:Journal of Iron and Steel Research
  • 机构:江苏大学材料科学与工程学院;南京大学南通材料工程技术研究院;
  • 出版日期:2019-01-15
  • 出版单位:钢铁研究学报
  • 年:2019
  • 期:v.31
  • 基金:国家高技术研究发展计划(863)资助项目(2012AA03A501);; 江苏省重点实验室开放课题资助项目(hsm1304);; 江苏大学人才资助项目(11JDG141,12JDG066)
  • 语种:中文;
  • 页:IRON201901009
  • 页数:8
  • CN:01
  • ISSN:11-2133/TF
  • 分类号:68-75
摘要
在Gleeble-3500热力模拟机上采用应力松弛法研究新型Fe-Cr-Ni耐热合金在600、650、700、750℃,压缩量为0.4的等温应变诱导析出行为。试验结果表明,材料的PTT曲线是典型的C曲线,并且存在一个最快的析出温度,在650℃左右。本材料奥氏体中主要有3种析出物,M23C6、NbC以及Laves-Fe2Nb相,纳米级的NbC是主要的析出强化相。
        The isothermal strain-induced precipitation behavior of Fe-Cr-Ni heat-resistant alloy at temperature of600,650,700,and 750℃and compression of 0.4 on a Gleeble-3500 thermal mechanical simulator was studied by stress relaxation method.The experimental results show that the PTT curve of the material is a typical C curve,and the fastest precipitation temperature is about 650℃.There are three kinds of precipitates in austenite of this material,M23 C6,NbC and Laves-Fe2 Nb,and nanometer NbC is the main precipitation strengthening phase.
引文
[1] USDOE.A technology roadmap for generation IV nuclear energy system[J].Philosophical Review,2002,66(2):239.
    [2]熊卫平.蒸汽发生器管束失效分析及其改进方法[J].化工机械,2013,40(2):246.(Xiong W P.Failure analysis and improvement of steam generator tube bundle[J].Chemical Machinery,2013,40(2):246.)
    [3]罗锐,程晓农,徐桂芳,等.新型Fe-20Cr-30Ni-0.6Nb-2Al-Mo合金的热变形行为及本构模型[J].稀有金属,2017(2):132.(Luo R,Cheng X N,Xu G F,et al.Constitutive modeling for elevated temperature flow behavior offe-20Cr-30Ni-0.6Nb-2Al-Mo alloy[J].Rare metals,2017(2):132.)
    [4]程晓农,戴起勋.奥氏体钢设计与控制[M].北京:国防工业出版社,2000.(Cheng X N,Dai Q X.Austenitic Steel Design and Control[M].Beijing:National Defense Industry Press,2005.)
    [5]田仲良,包汉生,何西扣,等.700℃汽轮机转子用耐热合金的强化机理[J].钢铁研究学报,2015,27(9):1.(Tian Z L,Bao H S,He X K,et al.Strengthening mechanisms of heat resistant alloys used for turbine rotor working at 700℃[J].Journal of Iron and Steel Research,2015,27(9):1.)
    [6] Yang S,Ling X,Zheng Y.Creep behaviors evaluation of Incoloy 800Hby small punch creep test[J].Materials Science and Engineering,2017,685A:1.
    [7]董毅,许云波,肖宝亮,等.含铌微合金钢低温区静态软化行为[J].钢铁研究学报,2009,21(8):17.(Dong Y,Xu Y B,Xiao B L,et al.Static softening behavior in low temperature area of Nb microalloyed steel[J].Journal of Iron and Steel Research,2009,21(8):17.)
    [8]李红,罗海文,杨才福,等.奥氏体不锈钢的再结晶动力学[J].钢铁研究学报,2008,20(9):32.(Li H,Luo H W,Yang C F,et al.Dynamic recrystallization kinetics in austenitic stainless steel[J].Journal of Iron and Steel Research,2008,20(9):32.)
    [9]崔忠圻,刘北兴.金属学与热处理原理[M].哈尔滨:哈尔滨工业大学出版社,2004.(Cui Z Q,Liu B X.Principles of Metallography and Heat Treatment[M].Harbin:Harbin Institute of Technology Press,2004.)
    [10]苑少强.奥氏体模型钢微结构及其演化[M].北京:北京理工大学出版社,2016.(Yuan S Q.Microstructure and Evolution of Austenitic Model Steel[M]. Beijing:Beijing Institute of Technology Press,2016.)
    [11] Zhou D Q,Xu X Q,Mao H H,et al.Plastic flow behaviour in an alumina-forming austenitic stainless steel at elevated temperatures[J].Materials Science and Engineering,2014,594A(4):246.
    [12] Christopher J,Choudhary B K.Constitutive modelling of stress-relaxation behaviour of tempered martensitic P91steel using sine hyperbolic rate law[J].Materials Chemistry and Physics,2018,205(2):442.
    [13]刘明哲,苑少强,刘义,等.Mn-Mo-Nb-B低碳微合金钢的应变诱导析出[J].钢铁研究学报,2010,22(3):29.(Liu M Z,Yuan S Q,Liu Y,et al.Strain strain-induced precipitation in Mn-Mo-Nb-B low carbon microalloyed steel[J].Journal of Iron and Steel Research,2010,22(3):29.)
    [14] Chen S W,Zhang C,Xia Z X,et al.Precipitation behavior of Fe2Nb Laves phase on grain boundaries in austenitic heat resistant steels[J].Materials Science and Engineering,2014,616A(616):183.
    [15]臧华勋,肖学山,童潮山,等.新型耐蚀超级奥氏体不锈钢中的高温析出相[J].钢铁研究学报,2009,21(2):44.(Zang H X,Xiao X S,Tong C S,et al.High temperature precipitated phases of new corrosion-resistant super austeniticsteel[J].Journal of Iron and Steel Research,2009,21(2):44.)
    [16]马翔,徐温崇.铌钒微合金化控轧钢的相分析[J].钢铁研究总院学报,1985,5(4):481.(Ma X,Xu W C.Phase analysis of Nb-V microalloyed control-rolled steel[J].Central Iron and Steel Research Institute Technical Bulletin,1985,5(4):481.)
    [17] Yamamoto Y,Brady M P,Lu Z P,et al.Alumina-forming austenitic stainless steels strengthened by Laves phase and MC carbide precipitates[J].Metallurgical and Materials Transactions,2007,38A(11):2737.
    [18]刘宝胜,李国栋,卫英慧,等.奥氏体不锈钢中σ相析出及其对性能影响的研究进展[J].钢铁研究学报,2014,26(1):1.(Liu B S,Li G D,Wei Y H,et al.Review ofσphase precipitation and its influence on performance in austenitic stainless steel[J].Journal of Iron and Steel Research,2014,26(1):1.)
    [19]丰涵,傅杰,朱剑,等.微合金钢中TiN的析出规律研究[J].金属学报,2000,36(8):801.(Feng H,Fu J,Zhu J,et al.Study on the precipitation behavior of TiN in the microalloyed steels[J].Acta Metallurgica Sinica,2000,36(8):801.)
    [20]罗海文,李红,方旭东,等.含铌奥氏体不锈钢晶粒长大数值模拟[J].钢铁研究学报,2009,21(2):34.(Luo H W,Li H,Fang X D,et al.Numerical simulation of grain growth in Nb-alloyed austenitic stainless steel[J].Journal of Iron and Steel Research,2009,21(2):34.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700