基于SPH法的钢轨打磨单颗磨粒磨削仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of single grain grinding in rail grinding based on SPH method
  • 作者:商维 ; 王文健 ; 郭俊 ; 刘启跃
  • 英文作者:SHANG Wei;WANG Wenjian;GUO Jun;LIU Qiyue;Tribology Research Institute,State Key Laboratory of Traction Power,Southwest Jiaotong University;
  • 关键词:钢轨打磨 ; SPH法 ; 磨粒几何形状 ; 负前角 ; 切削深度
  • 英文关键词:rail grinding;;smoothed particle hydrodynamics method;;grain geometry;;negative rake angle;;cutting depth
  • 中文刊名:JGSM
  • 英文刊名:Diamond & Abrasives Engineering
  • 机构:西南交通大学牵引动力国家重点实验室摩擦学研究所;
  • 出版日期:2016-06-29 10:42
  • 出版单位:金刚石与磨料磨具工程
  • 年:2016
  • 期:v.36;No.213
  • 基金:国家自然科学基金项目资助(51575460;51275430)
  • 语种:中文;
  • 页:JGSM201603011
  • 页数:7
  • CN:03
  • ISSN:41-1243/TG
  • 分类号:57-62+67
摘要
为研究钢轨打磨过程中材料的去除机理,采用光滑粒子流体动力学(SPH)的方法,仿真模拟钢轨打磨过程中单颗磨粒的切削过程,分析单颗磨粒几何形状、切削深度、负前角对打磨磨削过程中切削力、切削力比的变化规律及工件材料应力、变形情况的影响。结果表明:由于单颗磨粒的推挤作用,工件材料流动后形成毛刺和磨屑,而棱锥形磨粒可以获得较好的磨削加工表面;切削力随磨粒切削深度的增加而增大;磨粒负前角增大时,切削力和切削力比都随之增大,且负前角越大磨屑呈越明显的锯齿状。
        In order to study the material removal mechanism of rail grinding,smoothed particle hydrodynamics(SPH)method is used to simulate the single grain cutting process of rail grinding.In this work,single grains with different geometries,cutting depths and negative rake angles are assumed to cut workpieces.Changes of cutting force,cutting force ratio,stress and deformation of the workpiece are analyzed.Results show that material flow generates burr and chip due to grain pressing,and that the machined surface is superior when the grain is pyramid.In addition,the cutting force increases with increase of cutting depth.Bigger negative rake angle leads to higher cutting force and cutting force ratio,as well as more obvious sawtooth shapd chips.
引文
[1]金学松,杜星,郭俊,等.钢轨打磨技术研究进展[J].西南交通大学学报,2010,45(1):1–11.JIN Xuesong,DU Xing,GUO Jun,et al.State of arts of research on rail grinding[J].Journal of Southwest Jiaotong University,2010,45(1):1–11.
    [2]周清跃,田常海,张银花,等.高速铁路钢轨打磨关键技术研究[J].中国铁道科学,2012,33(2):66–70.ZHOU Qingyue,TIAN Changhai,ZHANG Yinhua,et al.Research on key rail grinding technology of high-speed railway[J].China Railway Science,2012,33(2):66–70.
    [3]智少丹,李建勇,刘月明,等.基于磨粒切削模型的钢轨打磨机理研究[J].中国铁道科学,2015,36(1):33–39.ZHI Shaodan,LI Jianyong,LIU Yueming,et al.Rail grinding mechanism based on grain cutting model[J].China Railway Science,2015,36(1):33–39.
    [4]张青,崔晓璐,陈光雄,等.钢轨打磨热力耦合分析[J].铁道学报,2015,37(5):78–82.ZHANG Qing,CUI Xiaolu,CHEN Guangxiong,et al.Thermal-mechanical coupling analysis in rail grinding[J].Journal of the China Railway Society,2015,37(5):78–82.
    [5]KANEMATSU Y,SATOH Y.Influence of type of grinding stone on rail grinding efficiency[J].Quarterly Report of RTRI,2011(52):97–102.
    [6]聂蒙,李建勇,沈海阔,等.钢轨打磨作业过程中磨削温度建模与仿真[J].铁道学报,2013,35(10):89–93.NIE Meng,LI Jianyong,SHEN Haikuo,et al.Modeling and simulation of temperature in process of rail grinding operation[J].Journal of the China Railway Society,2013,35(10):89–93.
    [7]VON D K,PSCHEL A.High speed grinding–railway noise reduction through regular rail grinding without traffic interruptions[J].Noise Control for Quality of Life,2013(1):810–816.
    [8]冯宝富,赵恒华,蔡光起,等.高速单颗磨粒磨削机理的研究[J].东北大学学报,2002,23(5):470–473.FENG Baofu,ZHAO Henghua,CAI Guangqi,et al.Study on the single grain high-speed grinding mechanisim[J].Journal of Northeastern University,2002,23(5):470–473.
    [9]RUTTIMANN N,ROETHLIN M,BUHL S,et al.Simulation of hexa-octahedral diamond grain cutting tests using the SPH method[J].Proceedia CIRP,2013,8:322–327.
    [10]RASIM M,MATTFELD P,KLOCKE F.Analysis of the grain shape influence on the chip formation in grinding[J].Journal of Materials Processing Technology,2015,226(9):60–68.
    [11]言兰,姜峰,融亦鸣.基于数值仿真技术的单颗磨粒切削机理[J].机械工程学报,2012,48(11):172–182.YAN Lan,JIANG Feng,RONG Yiming.Grinding mechanism based on single grain cutting simulation[J].Journal of Mechanical Engineering,2012,48(11):172–182.
    [12]段念,王文珊,于怡青,等.基于FEM与SPH耦合算法的单颗磨粒切削玻璃的动态过程仿真[J].中国机械工程,2013,24(20):2716–2721.DUAN Nian,WANG Wenshan,YU Yiqing,et al.Dynamic simulation of single grain cutting of glass by coupling FEM and SPH[J].China Mechanical Engineering,2013,24(20):2716–2721.
    [13]程泽,徐九华,丁文峰,等.单颗磨粒磨削钛合金TC4成屑过程仿真研究[J].金刚石与磨料磨具工程,2011,31(2):17–21.CHENG Ze,XU Jiuhua,DING Wenfeng,et al.Simulation of chip formation in grinding titanium alloy TC4with single abrasive grit[J].Diamond&Abrasives Engineering,2011,31(2):17–21.
    [14]王泽鹏,胡仁喜.ANSYS 13.0/LS-DYNA非线性有限元分析实例指导教程[M].北京:机械工业出版社,2011:358–362.WANG Zepeng,HU Renxi.Guidance and applications of nonlinear finite element method ANSYS 13.0/LS-DYNA[M].Beijing:China Machine Press,2011:358–362.
    [15]王君明,叶人珍,汤漾平,等.单颗磨粒的平面磨削三维动态有限元仿真[J].金刚石与磨料磨具工程,2009(5):41–45.WANG Junming,YE Renzhen,TANG Yangping,et al.3D dynamic finite element simulation of single abrasive grain during surface grinding[J].Diamond&Abrasives Engineering,2009(5):41–45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700