杉木人工林土壤养分及酸杆菌群落结构变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Changes in Soil Nutrients and Acidobacteria Community Structure in Cunninghamia lanceolata Plantations
  • 作者:杨安娜 ; 陆云峰 ; 张俊红 ; 吴家森 ; 徐金良 ; 童再康
  • 英文作者:Yang Anna;Lu Yunfeng;Zhang Junhong;Wu Jiasen;Xu Jinliang;Tong Zaikang;The State Key Laboratory of Subtropical Silviculture Zhejiang Agriculture and Forestry University;The Seeding Breeding Center of Ningbo Forestry Bureau;Kaihua Forestry Farm;
  • 关键词:杉木人工林 ; 土壤肥力 ; 16S ; rDNA测序 ; 土壤酸杆菌 ; 群落结构
  • 英文关键词:Cunninghamia lanceolata plantation;;soil fertility;;16S rDNA sequencing;;soil Acidobacteria;;community structure
  • 中文刊名:LYKE
  • 英文刊名:Scientia Silvae Sinicae
  • 机构:浙江农林大学省部共建亚热带森林培育国家重点实验室;浙江省宁波市林业局林特种苗繁育中心;浙江省开化县林场;
  • 出版日期:2019-01-15
  • 出版单位:林业科学
  • 年:2019
  • 期:v.55
  • 基金:国家重点研发项目“杉木高效培育土壤肥力维持关键技术研究”(2016YFD060030404);; 浙江省省院合作林业科技项目(2016SY16)
  • 语种:中文;
  • 页:LYKE201901014
  • 页数:9
  • CN:01
  • ISSN:11-1908/S
  • 分类号:122-130
摘要
【目的】研究浙江开化杉木人工林连栽过程中土壤养分及寡营养细菌酸杆菌群落变化规律,揭示不同类型杉木林地导致土壤肥力变化的酸杆菌分子生态学机制,为该地区杉木人工林林分结构调整、土壤资源的科学管理以及构建健康土壤生态系统提供科学依据。【方法】以马尾松林(对照)、马尾松林皆伐后的一代杉木林、杉木林迹地自然更新二代林土壤为研究对象,测定不同深度土层(0~20 cm, 20~40 cm)的土壤pH、束缚水含量、有机碳及主要速效养分含量,比较分析土壤肥力水平,同时进行土壤细菌16S rDNA高通量测序分析了优势酸杆菌群的结构变化。【结果】1)马尾松林改植杉木后土壤酸化显著,碱解氮、有效磷及速效钾含量显著降低(P<0.05),不同林地肥力水平大致规律表现为马尾松林>杉木一代林>杉木连栽林。2) 3种森林类型的土壤细菌中酸杆菌门均占明显优势(32.68%~49.17%),且连栽后的杉木连栽林0~20 cm土层酸杆菌占比显著高于马尾松林0~20 cm土层(P<0.05)。3)共检测出18个酸杆菌类群,其中Gp2在各个样地中均为绝对优势菌群,占酸杆菌群的47.74%~68.80%,Gp1占21.69%~29.72%,其次是Gp3占13.30%~22.41%。酸杆菌类群中Gp2优势加强,同时Gp3具有由优势菌属转变为次优势菌属的趋势。Gp1和Gp10相对丰度分别与土壤pH呈显著负相关(P=0.035)和显著正相关(P=0.035),Gp2相对丰度与土壤有效磷呈显著负相关(P=0.010)。【结论】马尾松林改植杉木及杉木人工林连栽过程中土壤肥力水平降低,而土壤寡营养细菌酸杆菌相对丰度提高,酸杆菌群落作为土壤优势菌群随土壤环境变化而不断调整,这预示着酸杆菌在杉木人工林土壤物质循环中起非常重要作用。
        【Objective】This paper investigated the variation of soil nutrients and oligotrophic bacterium, Acidobacterium communities during continuous planting of Cunninghamia lanceolata plantation in Kaihua, Zhejiang Province, to reveal the molecular ecological mechanism of Acidobacterium causing soil fertility changes in different types of C. lanceolata plantations. This study aimed to provide scientific basis for the adjustment of C. lanceolata stand structure, the scientific management of soil resources as well as the construction of healthy soil ecosystem in this area.【Method】The soil samples at different depths(0-20 cm, 20-40 cm) were collected from three different plantations: Pinus massoniana plantation(served as control);the first rotation of C. lanceolata plantation established after the clear cutting of P. massoniana, and the natural regeneration second rotation of C. lanceolata plantation, in Kaihua Forestry Farm in Zhejiang. Nutrient contents, physical and chemical properties of soil were analyzed. Then, the bacterial 16 S rDNA in soil was analyzed using high-throughput sequencing.【Result】 1)The replacement of P. massoniana plantation with C. lanceolata plantation led to a significant decrease in pH value, alkali-hydrolyzable nitrogen, available phosphorus and available kalium content(P<0.05). The soil fertility was ranked as the order of P. massoniana plantation>the first-rotation C. lanceolata plantation>the second-rotation C. lanceolata plantation. 2) On the phyla level, Acidobacteria were dominant in soil bacteria of the three forest types, accounting for 32.68%-49.17%. The Acidobacteria proportion in 0-20 cm soil layer of the second-rotation C. lanceolata plantation was significantly higher than that of P. massoniana plantation(P<0.05). 3) A total of 18 groups of Acidobacteria were detected and classified, among which Gp2 was the dominant group representing 47.74%-68.07% of the Acidobacteria. Gp1 occupied the second ranking, accounting for 18.35%-29.72%, followed by Gp3, accounting for 13.30%-22.41%. The dominance of Gp2 in Acidobacteria group was strengthened, and Gp3 had the trend of changing from dominant bacteria to subdominant bacteria. The relative dominance of Gp1 was significantly negatively correlated with soil pH(P=0.035), and that of Gp2 had a significantly negative correlation with available P(P=0.010), while Gp10 had a significantly positive correlation with soil pH(P=0.035). 【Conclusion】 With the increasing rotation of plantation, the soil available nutrient level was decreased, while the proportion of Acidobacteria was increased. The dominant genera within Acidobacteria varied with the soil environment, suggesting that Acidobacteria played important roles in soil nutrient cycling in C. lanceolata plantation.
引文
常安然, 李佳, 张耸, 等. 2017. 基于宏基因组学16S rDNA测序对烟草根际土壤细菌群落组成分析.中国农业科技导报, 19(2):43-50.(Chang A R, Li J, Zhang S, et al. 2017. Analysis of bacterial community structure in rhizosphere soil of tobacco based on the metagenomics 16S rDNA sequencing technology. Journal of Agricultural Science and Technology, 19(2):43-50. [in Chinese])
    陈龙池, 廖利平, 汪思龙, 等. 2002. 香草醛和对羟基苯甲酸对杉木幼苗生理特性的影响. 应用生态学报, 13(10): 1291-1294.(Chen L C, Liao L P, Wang S L, et al. 2002. Effect of vanillin and P- hydroxybenzoic acid on physiological characteristics of Chinese fir seedlings. Chinese Journal of Applied Ecology, 13(10): 1291-1294. [in Chinese])
    陈永亮, 韩士杰, 周玉梅, 等. 2002. 胡桃楸、落叶松纯林及其混交林根际土壤有效磷特性的研究. 应用生态学报, 13(7): 790-794.(Chen Y L, Han S J, Zhou Y M, et al. 2002. Characteristics of available P in the rhizosphere soil pure Juglans mandshurica and Larix gmelinii and their mixed plantation. Chinese Journal of Applied Ecology, 13(7): 790-794. [in Chinese])
    程瑞梅, 肖文发, 王晓荣, 等. 2010. 三峡库区植被不同演替阶段的土壤养分特征. 林业科学, 46(9): 1-6.(Cheng R M, Xiao W F, Wang X R, et al. 2010. Soil nutrient characteristics in different vegetation successional stages of three gorges reservoir area. Scientia Silvae Sinicae, 46(9): 1-6. [in Chinese])
    何斌, 梁伟克, 陈文军, 等. 2002. 湿地松、杉木林取代马尾松林后土壤肥力的差异. 东北林业大学学报, 30(6): 11-13.(He B, Liang W K, Chen W J, et al. 2002. Difference of soil fertilities following replacement of Pinus massoniana plantation by Pinus elliottii plantation and Cunninghamia lanceolata plantation. Journal of Northeast Forestry University, 30(6): 11-13. [in Chinese])
    何友军, 王清奎, 汪思龙, 等. 2006. 杉木人工林土壤微生物生物量碳氮特征及其与土壤养分的关系. 应用生态学报, 17(12): 2292-2296.(He Y J, Wang Q K, Wang S L, et al. 2006. Characteristics of soil microbial biomass carbon and nitrogen and their relationships with soil nutrients in Cunninghamia lanceolata plantations. Chinese Journal of Applied Ecology, 17(12): 2292-2296. [in Chinese])
    李胜蓝, 方晰, 项文化, 等. 2014. 湘中丘陵区4种森林类型土壤微生物生物量碳氮含量. 林业科学, 50(5): 8-16.(Li S L, Fang X, Xiang W H, et al. 2014. Soil microbial biomass carbon and nitrogen concentrations in four subtropical forests in hilly region of central Hunan province, China. Scientia Silvae Sinicae, 50(5): 8-16. [in Chinese])
    李婷婷. 2011. 浙江开化县林场杉木理论出材率表编制方法研究. 北京:北京林业大学硕士学位论文.(Li T T. 2011. Construction of theoretical merchantable volume tables of Cunninghamia lanceolata in Kaihua forest farm. Beijing: MS thesis of Beijing Forestry University. [in Chinese])
    刘丽, 徐明恺, 汪思龙, 等. 2013. 杉木人工林土壤质量演变过程中土壤微生物群落结构变化. 生态学报, 33(15): 4692-4706.(Liu L, Xu M K, Wang S L, et al. 2013. Effect of different Cunninghamia lanceolata plantation soil qualities on soil microbial community structure. Acta Ecologica Sinica, 33(15): 4692-4706. [in Chinese])
    鲁如坤. 2000. 土壤农业化学分析方法. 北京:中国农业科技出版社.(Lu R K. 2000. Soil argrochemistry analysis protocoes. Beijing: China Agriculture Science Press. [in Chinese])
    彭新华, 张斌, 赵其国. 2004. 土壤有机碳库与土壤结构稳定性关系的研究进展. 土壤学报, 41(4): 618-623.(Peng X H, Zhang B, Zhao Q G. 2004. A review on relationship between soil organic carbon pools and soil structure stability. Acta Pedologica Sinica, 41(4): 618-623. [in Chinese])
    王士亚. 2016. 连栽障碍地杉木无性系土壤酶活性及微生物功能多样性分析. 福州:福建农林大学硕士学士论文.(Wang S Y. 2016. Analysis of the soil enzyme activity and microbial functional diversity of Cunninghamia lanceolata clones in continuous planting obstacles soil of Cunninghamia lanceolata. Fuzhou: MS thesis of Fujian Agriculture & Forestry University. [in Chinese])
    王文波,王延平,王华田,等. 2016. 杨树人工林连作与轮作对土壤氮素细菌类群和氮素代谢的影响. 林业科学, 52(5): 45-54.(Wang W B, Wang Y P, Wang H T, et al. 2016. Effects of different continuous cropping and rotation of poplar plantation on soil nitrogen bacteria community and nitrogen metabolism. Scientia Silvae Sinicae, 52(5): 45-54. [in Chinese])
    夏志超, 孔垂华, 王朋, 等. 2012. 杉木人工林土壤微生物群落结构特征. 应用生态学报, 23(8): 2135-2140.(Xia Z C, Kong C H, Wang P, et al. 2012. Characteristics of soil microbial community structure in Cunninghamia lanceolata plantation. Chinese Journal of Applied Ecology, 23(8): 2135-2140. [in Chinese])
    杨玉盛, 陈银秀, 何宗明, 等. 2004. 福建柏和杉木人工林凋落物性质的比较. 林业科学, 40(1): 2-10.(Yang Y S, Chen Y X, He Z M, et al. 2004. Comparatively study on litter properties between plantations of Fokienia hodginsii and Cunninghamia lanceolata. Scientia Silvae Sinicae, 40(1): 2-10. [in Chinese])
    张志才. 2012. 第1代与第2代9年生杉木林分生产力及土壤肥力比较. 福建林业科技, 39(3): 83-87.(Zhang Z C. 2012. Comparison of productivity and soil properties between the first and second generations of 9-year-old Cunninghamia lanceolata plantations. Journal of Fujian Forestry Science and Technology, 39(3): 83-87. [in Chinese])
    Barns S M. 1999. Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Applied & Environmental Microbiology, 65(4): 1731-1737.
    Barns S M, Cain E C, Sommerville L, et al. 2007. Acidobacteria Phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Applied & Environmental Microbiology, 73(9): 3113-6.
    Hu J, Yang H, Long X, et al. 2016. Pepino (Solanum muricatum) planting increased diversity and abundance of bacterial communities in karst area. Scientific Reports, 6:21938.
    Jones R T, Robeson M S, Lauber C L, et al. 2009. A comprehensive survey of soil Acidobacterial diversity using pyrosequencing and clone library analyses. Isme Journal, 3(4): 442.
    Kielak A M, van Veen J A, Kowalchuk G A. 2010. Comparative analysis of Acidobacterial genomic fragments from terrestrial and aquatic metagenomic libraries, with emphasis on Acidobacteria subdivision 6. Applied & Environmental Microbiology, 76(20): 6769-6777.
    Kielak A, Pijl A S, van Veen J A, et al. 2009. Phylogenetic diversity of Acidobacteria in a former agricultural soil. Isme Journal, 3(3): 378-382.
    Kishimoto N, Kosako Y, Tano T. 1993. Acidiphilium aminolytica sp. nov.: An acidophilic chemoorganotrophic bacterium isolated from acidic mineral environment. Current Microbiology, 27(3): 131-136.
    Li H, Wang X, Liang C, et al. 2015. Aboveground-belowground biodiversity linkages differ in early and late successional temperate forests. Scientific Reports, 5(X): 12234.
    Liles M R, Manske B F, Bintrim S B, et al. 2003. A census of rRNA genes and linked genomic sequences within a soil metagenomic library. Appl Environ Microbiol, 69(5): 2684-2691.
    Liu J J, Sui Y Y, Yu Z H, et al. 2015. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biology & Biochemistry, 83(1): 29-39.
    Ludwig W, Bauer S H, Bauer M, et al. 1997. Detection and in situ identification of representatives of a widely distributed new bacterial phylum. Fems Microbiology Letters, 153(1): 181-190.
    Lu S P, Gischkat S, Reiche M, et al. 2010. Ecophysiolog y of Fe-cycling bacteria in acidic sediments. Applied and Environmental Microbiology, 76: 8174-8183.
    Naether A, Foesel B U, Naegele V, et al. 2012. Environmental factors affect Acidobacterial communities below the subgroup level in grassland and forest soils. Applied & Environmental Microbiology, 78(20): 7398-406.
    Navarrete A A, Kuramae E E, de Hollander M, et al. 2013. Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. Fems Microbiology Ecology, 83(3): 607-621.
    Pankratov T A, Ivanova A O, Dedysh S N, et al. 2011. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environmental Microbiology, 13: 1800-1814.
    Quaiser A, Ochsenreiter T, Lanz C, et al. 2003. Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics. Molecular Microbiology, 50(2): 563-575.
    Radajewski S, Webster G, Reay D S, et al. 2002. Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. Microbiology, 148: 2331-2342.
    Schnitzer S A, Klironomos J N, Hillerislambers J, et al. 2011. Soil microbes drive the classic plant diversity-productivity pattern. Ecology, 92(2): 296-303.
    Ward N L, Challacombe J F, Janssen P H, et al. 2009. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Applied & Environmental Microbiology, 75(7): 2046.
    Zhang Y G, Cong J, Lu H, et al. 2014. Community structure and elevational diversity patterns of soil Acidobacteria. Journal of Environmental Sciences(China), 26(8): 1717-1724.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700