阈值温度和积温对川西高原林线岷江冷杉径向生长的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of accumulated and threshold temperatures on the radial growth of Abies faxoniana in the alpine timberline,Western Sichuan Plateau
  • 作者:郭滨德 ; 王晓春 ; 张远东
  • 英文作者:GUO Binde;WANG Xiaochun;ZHANG Yuandong;Center for Ecological Research,School of Forestry,Northeast Forestry University;Daxing'an Mountains Forest Survey and Design Institute,State Forestry Bureau;Institute of Forest Ecology,Environment and Protection,Chinese Academy of Forestry; Key Laboratory of Forest Ecology and Environment,State Forestry Administration;
  • 关键词:高山林线 ; 径向生长 ; 积温 ; 树轮 ; 气候变暖 ; 岷江冷杉
  • 英文关键词:alpine timberline;;radial growth;;accumulated temperature;;tree ring;;climate warming;;Abies faxoniana
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:东北林业大学林学院生态研究中心;国家林业局大兴安岭林业调查规划设计院;中国林业科学研究院森林生态环境与保护研究所国家林业局森林生态环境重点实验室;
  • 出版日期:2018-11-05 09:06
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家重点研发计划“全球变化重点专项”(2016YFA0600800);; 国家自然科学基金项目(31770490);; 中央高校基本科研业务费项目(2572017DG02)
  • 语种:中文;
  • 页:STXB201903014
  • 页数:10
  • CN:03
  • ISSN:11-2031/Q
  • 分类号:142-151
摘要
高山林线的形成机理一直是高山生态学讨论的一个焦点问题,其中林线树木生长的阈值温度一直是研究热点。利用川西高原九寨沟弓杠岭林线岷江冷杉(Abies faxoniana)树木径向生长数据,通过树轮宽度-气候因子关系分析,探讨阈值温度和积温对林线岷江冷杉径向生长的影响。结果表明:林线岷江冷杉径向生长主要受到温度限制,其中林线岷江冷杉径向生长与当年生长季(7、8和9月)、冬季(12、1和2)及上一年9、10月温度显著正相关(P<0.05),但与降水的相关性较弱。林线岷江冷杉径向生长与不同起始温度的初日负相关,与不同起始温度的终日正相关,且与9.5℃阈值温度的初日负相关最强(P<0.05),与6.5℃阈值温度的终日正相关最强(P<0.05)。林线岷江冷杉径向生长还与7—9.5℃的积温及9.5℃持续天数显著正相关(P<0.05),说明7—9.5℃可能是形成层活动的阈值温度,尤其7℃可能是林线岷江冷杉生长的起始温度。林线岷江冷杉生长期从4月中旬开始到10月初结束,随着1980年后温度的显著升高,生长期活动积温开始增加,生长期初日提前(4.6d/10a,r~2=0.19,P=0.01),生长期终日延后(1.8 d/10a),使得生长期延长(6.4 d/10a),进而对林线岷江冷杉径向生长有显著的促进作用。未来气候变暖可能会使川西林线树木生长增加,林线可能会上移。
        The formation of alpine timberline has always been in focus in alpine mountain forest ecology,and the threshold temperature of tree growth at timberline has always been a hot spot of research. We used the radial growth data of Minjiang fir( Abies faxoniana) at the timberline of Gonggang Mountain,Jiuzhaigou,Western Sichuan Plateau to test the effects of threshold and accumulated temperatures on Minjiang fir growth through the response function analysis. The results showed that the radial growth of Minjiang fir is mainly limited by temperature. Furthermore,the radial growth positively correlated with temperatures during the growing season( July—September),during winter( previous December—February),and in September and October of the previous year( P < 0. 05). However,the effect of precipitation on Minjiang fir growth was weak. The fir radial growth negatively and positively correlated with the first and last days of growth at different threshold temperatures,respectively. The strongest correlations between fir growth and the first and last days of growth at different threshold temperatures occurred at 9.5 and 6.5 ℃,respectively. The fir radial growth at timberline also positively correlated with the accumulated temperatures( starting at 7,7.5,8,8.5,9,and 9.5 ℃) and the duration at 9.5 ℃( P < 0.05),which indicates that 7—9.5 ℃ might be the threshold temperature of cambium activity,especially the temperature of 7 ℃might be the initial temperature of photosynthesis and growth of Minjiang fir at the timberline. The growth period of Minjiang fir at timberline is from the mid-April to the beginning of October. With a significant increase in temperature after 1980,the accumulated temperature during the growing season began to increase,the first day of growth has shifted to an earlier date( 4.6 d/10 a,r~2= 0.19,P = 0.01),the last day of growth has been postponed( 1.8 d/10 a,r~2= 0. 04,P = 0. 25),the growing season has become longer( 6.4 d/10 a,r~2= 0.19,P = 0.01),thus,significantly promoting the radial growth of Minjiang fir at the timberline. The results suggest that future climate warming might increase tree growth at the timberline in the West Sichuan Plateau,and the timberline might move upward.
引文
[1]Neilson R P.Transient ecotone response to climatic change:some conceptual and modelling approaches.Ecological Applications,1993,3(3):385-395.
    [2]石培礼.亚高山林线生态交错带的植被生态学研究[D].北京:中国科学院(自然资源综合考察委员会),1999.
    [3]朱芬萌,安树青,关保华,刘玉虹,周长芳,王中生.生态交错带及其研究进展.生态学报,2007,27(7):3032-3042.
    [4]K9rner C,Riedl S.Alpine treelines:functional ecology of the global high elevation tree limits.Basel:Springer,2012.
    [5]何吉成,罗天祥,徐雨晴.藏东南色季拉山急尖长苞冷杉(Abies georgei var.smithii)林线的生态气候特征.生态学报,2009,29(1):37-46.
    [6]Smith W K,Germino M J,Johnson D M,Reinhardt K.The altitude of alpine treeline:a bellwether of climate change effects.The Botanical Review,2009,75(2):163-190.
    [7]李明财,罗天祥,朱教君,孔高强.高山林线形成机理及植物相关生理生态学特性研究进展.生态学报,2008,28(11):5583-5591.
    [8]Camarero J J,Gutiérrez E.Pace and pattern of recent treeline dynamics:response of ecotones to climatic variability in the Spanish Pyrenees.Climatic Change,2004,63(1/2):181-200.
    [9]彭剑峰,勾晓华,陈发虎,刘普幸,张永,方克艳.阿尼玛卿山中部高山林线树轮宽度对气候变化的响应.北京林业大学学报,2006,28(S2):57-63.
    [10]王晓春.中国东北亚高山林线对全球气候变化的响应[D].哈尔滨:东北林业大学,2004:113-115.
    [11]Zhang Y J,Dai L M,Pan J.The trend of tree line on the northern slope of Changbai Mountain.Journal of Forestry Research,2001,12(2):97-100.
    [12]赵守栋,何新,张冰琦,刘琦,王辉,江源.贺兰山东坡高山林线青海云杉(Picea crassifolia)径向生长对气候因子的响应.北京师范大学学报:自然科学版,2013,49(5):501-505.
    [13]刘娟,邓徐,吕利新.西藏八宿川西云杉树线过渡区树木生长与气候关系的一致性.植物生态学报,2015,39(5):442-452.
    [14]程伟,罗鹏,吴宁.岷江上游林线附近岷江冷杉种群(Abies faxoniana Rehd.et Wild)的生态学特点.应用与环境生物学报,2005,11(3):300-303.
    [15]程伟,吴宁,罗鹏.岷江上游林线附近岷江冷杉种群的生存分析.植物生态学报,2005,29(3):349-353.
    [16]王晓春,韩士杰,邹春静,周晓峰.长白山岳桦种群格局的地统计学分析.应用生态学报,2002,13(7):781-784.
    [17]王琴香,沈海龙,和春庭,Tuan N T.红松人工林和相邻次生林林下红松天然更新种群格局分析.森林工程,2018,34(2):16-20.
    [18]石培礼,李文华.长白山林线交错带形状与木本植物向苔原侵展和林线动态的关系.生态学报,2000,20(4):573-580.
    [19]沈泽昊,方精云,刘增力,伍杰.贡嘎山海螺沟林线附近峨眉冷杉种群的结构与动态.植物学报,2001,43(12):1288-1293.
    [20]王文波,赵鹏武,姜喜麟,邹全程.兴安落叶松林分结构及其生物量碳分配格局.森林工程,2017,33(1):16-21.
    [21]许林军,彭鸿,陈存根,唐红亮,杨亚娟.秦岭太白红杉林分布及太白山高山林线特征的定量分析.西北植物学报,2005,25(5):968-972.
    [22]王晓雨,于大炮,周莉,周旺明,吴志军,郭焱,包也,孟莹莹,代力民.长白山北坡林线岳桦种群空间分布格局.生态学报,2015,35(1):116-124.
    [23]张凌宇,刘兆刚.大兴安岭盘古林场2种优势树种空间分布格局研究.森林工程,2017,33(2):11-16,21-21.
    [24]冉飞,梁一鸣,杨燕,杨阳,王根绪.贡嘎山雅家埂峨眉冷杉林线种群的时空动态.生态学报,2014,34(23):6872-6878.
    [25]张立杰,刘鹄.祁连山林线区域青海云杉种群对气候变化的响应.林业科学,2012,48(1):18-21.
    [26]任斐鹏,杨艳刚,董满宇,张文涛,任斐鹏.芦芽山林线白杄与华北落叶松径向生长特征比较.应用生态学报,2009,20(6):1271-1277.
    [27]曾令兵,王襄平,常锦峰,林鑫,吴玉莲,尹伟伦.祁连山中段青海云杉高山林线交错区树轮宽度与气候变化的关系.北京林业大学学报,2012,34(5):50-56.
    [28]郭滨德.川西高原不同坡向和海拔云冷杉树轮对气候变化的响应差异[D].哈尔滨:东北林业大学,2016:23-31.
    [29]陈文年,吴宁,罗鹏,晏兆莉.岷江上游林草交错带祁连山圆柏群落的物种多样性及乔木种群的分布格局.应用与环境生物学报,2003,9(3):221-225.
    [30]Stokes M A,Smiley T L.An Introduction to Tree Ring Dating.Chicago:University of Chicago Press,1968.
    [31]Holmes R L.Computer-assisted quality control in tree-ring dating and measurement.Tree-ring Bulletin,1983,43:69-78.
    [32]Cook E R,Holmes R L.Users Manual for ARSTAN:Laboratory of Tree-ring Research.Tucson:University of Arizona,1986:50-60.
    [33]王树廷.关于日平均气温稳定通过各级界限温度初终日期的统计方法.气象,1982,(6):29-30.
    [34]邵雪梅,范金梅.树轮宽资料所指示的川西过去气候变化.第四纪研究,1999,(1):81-89.
    [35]封晓辉,程瑞梅,肖文发,王瑞丽,王晓荣,刘泽彬.基于日均温度的华山松径向生长敏感温度研究.生态学报,2012,32(5):1450-1457.
    [36]Gou X H,Chen F H,Jacoby G,Cook E,Yang M X,Peng J F,Zhang Y.Rapid tree growth with respect to the last 400 years in response to climate warming,northeastern Tibetan Plateau.International Journal of Climatology,2007,27(11):1497-1503.
    [37]李宗善,刘国华,张齐兵,胡婵娟,罗淑政,刘兴良,何飞.利用树木年轮宽度资料重建川西卧龙地区过去159年夏季温度的变化.植物生态学报,2010,34(6):628-641.
    [38]段建平,王丽丽,徐岩,孙毓,陈津.贡嘎山东坡不同海拔高度树轮宽度对气候变化的响应.地理研究,2010,29(11):1940-1949.
    [39]彭剑峰,勾晓华,陈发虎,方克艳,张芬.坡向对海拔梯度上祁连圆柏树木生长的影响.植物生态学报,2010,34(5):517-525.
    [40]王晓春,周晓峰,李淑娟,孙龙,牟长城.气候变暖对老秃顶子林线结构特征的影响.生态学报,2004,24(11):2412-2421.
    [41]王晓明,赵秀海,高露双,姜庆彪.长白山北坡林线处岳桦年轮年表及其与气候的关系.应用与环境生物学报,2012,18(1):9-16.
    [42]吴祥定,邵雪梅.采用树轮宽度资料分析气候变化对树木生长量影响的尝试.地理学报,1996,(S1):92-101.
    [43]王婷,于丹,李江风,马克平.树木年轮宽度与气候变化关系研究进展.植物生态学报,2003,27(1):23-33.
    [44]王晓春,张小全,朱建华,侯振宏,柴正礼.树木年轮与全球变暖的关系研究进展.世界林业研究,2009,22(6):38-42.
    [45]刘洪滨,邵雪梅.采用秦岭冷杉年轮宽度重建陕西镇安1755年以来的初春温度.气象学报,2000,58(2):223-233.
    [46]Liang E Y,Shao X,Xu Y.Tree-ring evidence of recent abnormal warming on the southeast Tibetan Plateau.Theoretical and Applied Climatology,2009,98(1/2):9-18.
    [47]Liang E Y,Shao X M,Eckstein D,Huang L,Liu X H.Topography-and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau.Forest Ecology and Management,2006,236(2/3):268-277.
    [48]Fang K Y,Gou X H,Chen F H,Peng J F,D'Arrigo R,Wright W,Li M H.Response of regional tree-line forests to climate change:evidence from the northeastern Tibetan Plateau.Trees,2009,23(6):1321-1329.
    [49]Wang T,Zhang Q B,Ma K P.Treeline dynamics in relation to climatic variability in the central Tianshan Mountains,northwestern China.Global Ecology and Biogeography,2006,15(4):406-415.
    [50]Takahashi K,Azuma H,Yasue K.Effects of climate on the radial growth of tree species in the upper and lower distribution limits of an altitudinal ecotone on Mount Norikura,central Japan.Ecological Research,2003,18(5):549-558.
    [51]徐宁,王晓春,张远东,刘世荣.川西米亚罗林区不同海拔岷江冷杉生长对气候变化的响应.生态学报,2013,33(12):3742-3751.
    [52]Smith K T.An organismal view of dendrochronology.Dendrochronologia,2008,26(3):185-193.
    [53]Deslauriers A,Giovannelli A,Rossi S,Castro G,Fragnelli G,Traversi L.Intra-annual cambial activity and carbon availability in stem of poplar.Tree Physiology,2009,29(10):1223-1235.
    [54]Turcotte A,Morin H,Krause C,Deslauriers A,Thibeault-Martel M.The timing of spring rehydration and its relation with the onset of wood formation in black spruce.Agricultural and Forest Meteorology,2009,149(9):1403-1409.
    [55]Deslauriers A,Rossi S,Anfodillo T,Saracino A.Cambial phenology,wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy.Tree Physiology,2008,28(6):863-871.
    [56]Begum S,Nakaba S,Oribe Y,Kubo T,Funada R.Cambial sensitivity to rising temperatures by natural condition and artificial heating from late winter to early spring in the evergreen conifer Cryptomeria japonica.Trees,2010,24(1):43-52.
    [57]Rossi S,Deslauriers A,Gri9ar J,Seo J W,Rathgeber C BK,Anfodillo T,Morin H,Levanic T,Oven P,Jalkanen R.Critical temperatures for xylogenesis in conifers of cold climates.Global Ecology and Biogeography,2008,17(6):696-707.
    [58]封晓辉,程瑞梅,肖文发,王瑞丽,王晓荣,高宝庆.北亚热带生长期温度对马尾松径向生长的影响.生态学杂志,2011,30(4):650-655.
    [59]程瑞梅,刘泽彬,封晓辉,肖文发.气候变化对树木木质部生长影响的研究进展.林业科学,2015,44(6):147-154.
    [60]侯鑫源,史江峰,李玲玲,鹿化煜.湖北神农架巴山冷杉径向生长对气候的响应.应用生态学报,2015,26(3):689-696.
    [61]袁玉江,邵雪梅,魏文寿,何清,喻树龙.乌鲁木齐河山区树木年轮-积温关系及≥5.7℃积温的重建.生态学报,2005,25(4):756-762.
    [62]尹红,刘洪滨,郭品文,Linderholm H.小兴安岭低山区红松生长的气候响应机制.生态学报,2009,29(12):6333-6341.
    [63]李川,陈静,朱燕君.川西高原近五十年气候变化的初步研究.高原气象,2003,22(S1):138-144.
    [64]王连喜,陈怀亮,李琪,余卫东.植物物候与气候研究进展.生态学报,2010,30(2):447-454.
    [65]Chen X Q,Hu B,Yu R.Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China.Global Change Biology,2005,11(7):1118-1130.
    [66]丁明军,张镱锂,孙晓敏,刘林山,王兆锋.近10年青藏高原高寒草地物候时空变化特征分析.科学通报,2012,57(33):3185-3194.
    [67]Jeong S J,Ho C H,Gim H J,Brown M E.Phenology shifts at start vs.end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008.Global Change Biology,2011,17(7):2385-2399.
    [68]Roetzer T,Wittenzeller M,Haeckel H,Nekovar J.Phenology in central Europe-differences and trends of spring phenophases in urban and rural areas.International Journal of Biometeorology,2000,44(2):60-66.
    [69]White M A,Running S W,Thornton P E.The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88years in the eastern US deciduous forest.International Journal of Biometeorology,1999,42(3):139-145.
    [70]Zhang X B,Ren J R,Zhang D E.Phenological observations on Larix principis-rupprechtii Mayr.in primary seed orchard.Journal of Forestry Research,2001,12(3):201-204.
    [71]柏秦凤,霍治国,李世奎,杜海江,贺楠,姜燕.1978年前、后中国≥10℃年积温对比.应用生态学报,2008,19(8):1810-1816.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700