外泌体及其在神经退行性疾病发生、发展和诊治中的作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Exosomes and their roles in neurodegenerative diseases: from pathogenic, diagnostic and therapeutical perspectives
  • 作者:张鲁琳 ; 刘明欣 ; 谢俊霞 ; 宋宁
  • 英文作者:ZHANG Lu-Lin;LIU Ming-Xin;XIE Jun-Xia;SONG Ning;Department of Physiology and Pathophysiology,Medical College Institute of Brain Science and Disease,Qingdao University;
  • 关键词:外泌体 ; 神经退行性疾病 ; 错误折叠蛋白 ; 生物标记物 ; 药物传递
  • 英文关键词:exosomes;;neurodegenerative diseases;;misfolded proteins;;biomarkers;;drug delivery
  • 中文刊名:SLXU
  • 英文刊名:Acta Physiologica Sinica
  • 机构:青岛大学基础医学院生理学与病理生理学系脑科学与疾病研究院;
  • 出版日期:2019-02-21 10:05
  • 出版单位:生理学报
  • 年:2019
  • 期:v.71
  • 基金:国家自然科学基金项目(No.31871049,81430024); 国家级大学生创新创业训练计划项目(No.201811065012)资助
  • 语种:中文;
  • 页:SLXU201903009
  • 页数:15
  • CN:03
  • ISSN:31-1352/Q
  • 分类号:65-79
摘要
外泌体是一种直径在30~100 nm的细胞外膜性囊泡,由真核生物体内的多种细胞产生,其内含有蛋白质、脂质、核酸以及和起源细胞相关的物质等。外泌体能够携带起源细胞内成分并作用于邻近或远距离的细胞,从而实现生理及疾病状态下不同细胞间的信息交流。近年来,研究表明神经退行性疾病发病相关的错误折叠蛋白(如α-突触核蛋白、tau蛋白、β-淀粉样蛋白等)能够通过外泌体运输,从而促进这些蛋白在细胞间传播并传播至未病变区域,加快疾病进程。本综述着重阐述了外泌体的起源和组成、生物合成、分泌、功能,尤其是在神经退行性疾病发生和发展中的作用。除此之外,还探讨了外泌体作为生物标记物和药物传递载体在神经退行性疾病的诊断与治疗中的作用和前景。
        Exosomes are extracellular membranous vesicles with a diameter of 30–100 nm derived from a variety of eukaryocytes.The cargo of exosomes includes proteins, lipids, nucleic acids, and substances of the cells from which they originate. They can transfer functional cargo to neighboring and distal cells, therefore contributing to intercellular communication in both physiological and pathological processes. In recent years, it was shown that exosomes in several neurodegenerative diseases are closely related to the transmission of disease-related misfolded proteins(such as α-synuclein, tau, amyloid β-protein, etc). These proteins are transported by exosomes, thus promoting the propagation to unaffected cells or areas and accelerating the progression of neurodegenerative diseases.This review focuses on the origin and composition, biological synthesis, secretion, function of exosomes, as well as their roles in the pathogenesis and progression of neurodegenerative diseases. In addition, we also discuss that exosomes can serve as biomarkers and drug delivery vehicles, and play a role in the diagnosis and treatment of neurodegenerative diseases.
引文
1Raposo G, Stoorvogel W. Extracellular vesicles:exosomes,microvesicles, and friends. J Cell Biol 2013; 200(4):373–383.
    2 Colombo M, Raposo G, Théry C. Biogenesis, secretion,and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014; 30(1):255 –289.
    3 Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 1983; 97(2):329–339.
    4 He C, Zheng S, Luo Y, Wang B. Exosome theranostics:biology and translational medicine. Theranostics 2018;8 (1):237–255.
    5 Théry C, Zitvogel L, Amigorena S. Exosomes:composition, biogenesis and function. Nat Rev Immunol 2002; 2(8):569 –579.
    6 Bellingham SA, Guo B, Coleman B, Hill AF. Exosomes:vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Front Physiol 2012; 3(124):124.
    7 Haraszti RA, Didiot MC, Sapp E, Leszyk J, Shaffer SA,Rockwell HE, Gao F, Narain NR, Difiglia M, Kiebish MA.High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles 2016; 5(1):32570.
    8 Chiasserini D, van Weering JR, Piersma SR, Pham TV,Malekzadeh A, Teunissen CE, de Wit H, Jiménez CR. Proteomic analysis of cerebrospinal fluid extracellular vesicles:a comprehensive dataset. J Proteomics 2014; 106:191–204.
    9 Jan AT, Malik MA, Rahman S, Yeo HR, Lee EJ, Abdullah TS, Choi I. Perspective insights of exosomes in neurodegenerative diseases:a critical appraisal. Front Aging Neurosci2017; 9:317.
    10 Simons M, Raposo G. Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol 2009;21 (4):575–581.
    11 Lachenal G, Pernet-Gallay K, Chivet M, Hemming FJ, Belly A, Bodon G, Blot B, Haase G, Goldberg Y, Sadoul R.Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol Cell Neurosci 2011; 46(2):409–418.
    12 Cosme J, Liu PP, Gramolini AO. The cardiovascular exosome:Current perspectives and potential. Proteomics 2013;13 (10–11):1654–1659.
    13 Wang X, Gu H, Huang W, Wang Y, Fan GC. Hsp20-reprogrammed exosomes derived from cardiomyocytes provide protection against diabetic cardiomyopathy in mice. Circulation 2014; 130 Suppl 2:A12638.
    14 Kr?mer-Albers EM, Bretz N, Tenzer S, Winterstein C,M?bius W, Berger H, Nave KA, Schild H, Trotter J. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins:Trophic support for axons? Proteomics Clin Appl 2007; 1(11):1446–1461.
    15 Zhao X, Wu Y, Duan J, Ma Y, Shen Z, Wei L, Cui X, Zhang J, Xie Y, Liu J. Quantitative proteomic analysis of exosome protein content changes induced by hepatitis B virus in Huh-7 cells using SILAC labeling and LC-MS/MS. J Proteome Res 2014; 13(12):5391.
    16 de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H,Posthuma G, Schiffelers RM, Gucek M, van Balkom BW.Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles 2012; 1. doi:10.3402/jev.v1i0.18396.
    17 Kilpinen L, Impola U, Sankkila L, Ritamo I, Aatonen M,Kilpinen S, Tuimala J, Valmu L, Levijoki J, Finckenberg P,Siljander P, Kankuri E, Mervaala E, Laitinen S. Extracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioning. J Extracell Vesicles 2013; 2. doi:10.3402/jev.v2i0.21927.
    18 Segura E, Nicco C, Lombard B, Véron P, Raposo G, Batteux F, Amigorena S, Théry C. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood 2005; 106(1):216–223.
    19 Hanson PI, Cashikar A. Multivesicular body morphogenesis.Annu Rev Cell Dev Biol 2012; 28(1):337–362.
    20 Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 2018; 75(2):193–208.
    21 Colombo M, Moita C, Van NG, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Théry C, Raposo G. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 2013; 126(24):5553–5565.
    22 Tamai K, Tanaka N, Nakano T, Kakazu E, Kondo Y, Inoue J,Shiina M, Fukushima K, Hoshino T, Sano K. Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0protein. Biochem Biophys Res Commun 2010; 399(3):384 –390.
    23 Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G,Geeraerts A, Ivarsson Y, Depoortere F, Coomans C, Vermeiren E. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 2012; 14(7):677–685.
    24 Romancino DP, Paterniti G, Campos Y, Luca AD, Felice VD, D’Azzo A, Bongiovanni A. Identification and characterization of the nano-sized vesicles released by muscle cells. FEBS Lett 2013; 587(9):1379–1384.
    25 Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D,Wieland F, Schwille P, Brügger B, Simons M. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008; 319(5867):1244–1247.
    26 Dreux M, Garaigorta U, Boyd B, Décembre E, Chung J,Whittenbauer C, Wieland S, Chisari FV. Short range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe2012; 12(4):558–570.
    27 Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y,Ochiya T. Secretory mechanisms and intercellular transfer of micrornas in living cells. J Biol Chem 2010; 285(5):17442–17452.
    28 Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J,Vitale N, Slavík J, Machala M, Zimmermann P. SynteninALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun2014; 5(3):3477.
    29 Strauss K, Goebel C, Runz H, M?bius W, Weiss S, Feussner I,Simons M, Schneider A. Exosome secretion ameliorates lysosomal storage of cholesterol in Niemann-Pick type C disease. J Biol Chem 2010; 285(34):26279–26288.
    30 van Niel G, Charrin S, Simoes S, Romao M, Rochin L,Saftig P, Marks MS, Rubinstein E, Raposo G. The tetraspanin CD63 regulates ESCRT-independent and-dependent endosomal sorting during melanogenesis. Dev Cell 2011;21 (4):708–721.
    31 Perez-Hernandez D, Gutiérrez-Vázquez C, Jorge I, LópezMartín S, Ursa A, Sánchez-Madrid F, Vázquez J, Yá?ez-MóM. The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J Biol Chem 2013; 288(17):11649–11661.
    32 Geminard C, Gassart AD, Blanc L, Vidal M. Degradation of AP2 during retscolocyte maturation enhances binding of Hsc70 and Afix to a common site on TfR for sorting into exosomes. Traffic 2004; 5(3):181–193.
    33 Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B,Follenzi A, Potolicchio I, Nieves E, Cuervo AM, Santambrogio L. Microautophagy of cytosolic proteins by late endosomes. Dev Cell 2011; 20(1):131–139.
    34 Goody RS, Müller MP, Wu YW. Mechanisms of action of Rab proteins, key regulators of intracellular vesicular transport. Biol Chem 2017; 398(5–6):565–575.
    35 Savina A, Fader CM, Damiani MT, Colombo MI. Rab11promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 2005; 6(2):131–143.
    36 Savina A, Vidal M, Colombo MI. The exosome pathway in K562 cells is regulated by Rab11. J Cell Sci 2002; 115(12):2505–2515.
    37 Koles K, Nunnari J, Korkut C, Barria R, Brewer C, Li Y,Leszyk J, Zhang B, Budnik V. Mechanism of evenness interrupted(Evi)-exosome release at synaptic boutons. J Biol Chem 2012; 287(3):16820–16834.
    38 Hsu C, Morohashi Y, Yoshimura S, Manrique-Hoyos N,Jung S, Lauterbach MA, Bakhti M, Gr?nborg M, M?bius W, Rhee J, Barr FA, Simons M. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A–C. J Cell Biol 2010; 189(2):223–232.
    39 Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G,Savina A, Moita CF, Schauer K, Hume AN, Freitas RP.Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 2010; 12(1):19–30; sup pp 11–13.
    40 Stenmark H. Rab GTPases as coordinators of vesicle traffic.Nat Rev Mol Cell Biol 2009; 10(8):513–525.
    41 Bonifacino JS, Glick SB. The mechanisms of vesicle budding and fusion. Cell 2004; 116(2):153–166.
    42 Gross JC, Chaudhary V, Bartscherer K, Boutros M. Active Wnt proteins are secreted on exosomes. Nat Cell Biol 2012;14 (10):1036–1045.
    43 Sinha S, Hoshino D, Hong NH, Kirkbride KC, Gregalarson NE, Seiki M, Tyska MJ, Weaver AM. Cortactin promotes exosome secretion by controlling branched actin dynamics.J Cell Biol 2016; 214(2):197–213.
    44 Liégeois S, Benedetto A, Garnier JM, Schwab Y, Labouesse M. The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. J Cell Biol 2006; 173(6):949–961.
    45 Blanchard N, Lankar D, Faure F, Regnault A, Dumont C,Raposo G, Hivroz C. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol 2002; 168(7):3235–3241.
    46 Muntasell A, Berger AC, Roche PA. T cell-induced secretion of MHC class II-peptide complexes on B cell exosomes.EMBO J 2007; 26(19):4263–4272.
    47 Buschow SI, Nolte-'t Hoen EN, Van NG, Pols MS, Ten BT,Lauwen M, Ossendorp F, Melief CJ, Raposo G, Wubbolts R. MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic 2009; 10(10):1528–1542.
    48 Frühbeis C, Fr?hlich D, Wen PK, Amphornrat J, Thilemann S, Saab AS, Kirchhoff F, M?bius W, Goebbels S, Nave KA.Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol 2013;11 (7):e1001604.
    49 Meldolesi J. Exosomes and ectosomes in intercellular communication. Curr Biol 2018; 28:R435–R444.
    50 Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 2014; 14(3):195 –208.
    51 Raposo G, Nijman HW, Stoorvogel W, Liejendekker R,Harding CV, Melief CJ, Geuze HJ. B lymphocytes secrete antigen-presenting vesicles. J Exp Med 1996; 183(3):1161–1172.
    52 Wang S, Cesca F, Loers G, Schweizer M, Buck F, Benfenati F, Schachner M, Kleene R. Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. J Neurosci2011; 31(20):7275–7290.
    53 Maia J, Caja S, Strano Moraes MC, Couto N, Costasilva B.Exosome-based cell-cell communication in the tumor microenvironment. Front Cell Dev Biol 2018; 6:18.
    54 O’Connell J, Bennett MW, O’Sullivan GC, Collins JK,Shanahan F. The Fas counterattack:cancer as a site of immune privilege. Immunol Today 1999; 20(1):46–52.
    55 Clayton A, Mitchell JP, Court J, Linnane S, Mason MD,Tabi Z. Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol 2008; 180(11):7249–7258.
    56 Singh A, Fedele C, Lu H, Nevalainen MT, Keen JH, Languino LR. Exosome-mediated transfer ofαvβ3 integrin from tumorigenic to non-tumorigenic cells promotes a migratory phenotype. Mol Cancer Res 2016; 14(11):1136–1146.
    57 Hoshino A, Costasilva B, Shen TL, Rodrigues G, Hashimoto A, Tesic MM, Molina H, Kohsaka S, Di GA, Ceder S.Tumour exosome integrins determine organotropic metastasis.Nature 2015; 527(7578):329–335.
    58 Wolfers J, Lozier A, Raposo G, Regnault A, Théry C,Masurier C, Flament C, Pouzieux S, Faure F, Tursz T.Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 2001;7 (3):297–303.
    59 Guan Z, Ping Y. A novel cell-cell communication mechanism in the nervous system:exosomes. J Neurosci Res2018; 96(1):45–52.
    60 Jucker M, Walker LC. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature2013; 501(7465):45–51.
    61 Weissmann C, Enari M, Kl?hn PC, Rossi D, Flechsig E.Transmission of prions. J Infect Dis 2002; 186 Suppl 2:S157–S165.
    62 Sch?tzl HM, Laszlo L, Holtzman DM, Tatzelt J, Dearmond SJ, Weiner RI, Mobley WC, Prusiner SB. A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J Virol 1997; 71(11):8821–8831.
    63 Hartmann A, Muth C, Dabrowski O, Krasemann S, Glatzel M. Exosomes and the prion protein:more than one truth.Front Neurosci 2017; 11:194.
    64 Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M,Laude H, Raposo G. Cells release prions in association with exosomes. Proc Natl Acad Sci U S A 2004; 101(26):9683–9688.
    65 Maroteaux L, Campanelli JT, Scheller RH. Synuclein:a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 1988; 8(8):2804–2815.
    66 Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM,Trojanowski JQ, Iwatsubo T. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 1998; 152(4):879–884.
    67 Fujiwara H, Hasegawa M, Dohmae N, Kawashima A,Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T.alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 2002; 4(2):160–164.
    68 Hasegawa M, Fujiwara H, Nonaka T, Wakabayashi K,Takahashi H, Lee VM, Trojanowski JQ, Mann D, Iwatsubo T. Phosphorylated alpha-synuclein is ubiquitinated in alpha-synucleinopathy lesions. J Biol Chem 2002; 277(50):49071–49076.
    69 Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ,Jakes R, Goedert M. Alpha-synuclein in Lewy bodies.Nature 1997; 388(6645):839–840.
    70 Braak H, Braak E. Neuropathological stageing of Alzheimerrelated changes. Acta Neuropathol 1991; 82(4):239–259.
    71 Nonaka T, Watanabe ST, Iwatsubo T, Hasegawa M. Seeded aggregation and toxicity of alpha-synuclein and tau:cellular models of neurodegenerative diseases. J Biol Chem 2010;285 (45):34885–34898.
    72 Masuda-Suzukake M, Nonaka T, Hosokawa M, Oikawa T,Arai T, Akiyama H, Mann DM, Hasegawa M. Prion-like spreading of pathologicalα-synuclein in brain. Brain 2013;136 (4):1128–1138.
    73 Luk KC, Kehm VM, Zhang B, O’Brien P, Trojanowski JQ,Lee VMY. Intracerebral inoculation of pathologicalα-synuclein initiates a rapidly progressive neurodegenerativeα-synucleinopathy in mice. J Exp Med 2012; 209(5):975–986.
    74 Danzer KM, Kranich LR, Ruf WP, Cagsalgetkin O,Winslow AR, Zhu L, Vanderburg CR, Mclean PJ. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 2012; 7(1):42.
    75 Ahn KJ, Paik SR, Chung KC, Kim J. Amino acid sequence motifs and mechanistic features of the membrane translocation ofα-synuclein. J Neurochem 2006; 97(1):265–279.
    76 Danzer KM, Haasen D, Karow AR, Moussaud S, Habeck M,Giese A, Kretzschmar H, Hengerer B, Kostka M. Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 2007; 27(34):9220–9232.
    77 Danzer KM, Krebs SK, Wolff M, Birk G, Hengerer B.Seeding induced byα-synuclein oligomers provides evidence for spreading ofα-synuclein pathology. J Neurochem 2009; 111(1):192–203.
    78 Sung JY, Kim J, Paik SR, Park JH, Ahn YS, Chung KC.Induction of neuronal cell death by Rab5A-dependent endocytosis of alpha-synuclein. J Biol Chem 2001; 276(29):27441–27448.
    79 Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML,Wilson B, Zhang W, Zhou Y, Hong JS. Aggregatedα-synuclein activates microglia:a process leading to disease progression in Parkinson’s disease. FASEB J 2005; 19(6):533 –542.
    80 Lee HJ, Patel S, Lee SJ. Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. J Neurosci2005; 25(25):6016–6024.
    81 Shtilerman MD, Ding TT, Lansbury PT Jr. Molecular crowding accelerates fibrillization of alpha-synuclein:could an increase in the cytoplasmic protein concentration induce Parkinson’s disease? Biochemistry 2002; 41(12):3855–3860.
    82 Grey M, Dunning CJ, Gaspar R, Grey C, Brundin P, Sparr E,Linse S. Acceleration of alpha-synuclein aggregation by exosomes. J Biol Chem 2014; 290(5):2969–2982.
    83 Lowe R, Pountney DL, Jensen PH, Gai WP, Voelcker NH.Calcium(II)selectively inducesα-synuclein annular oligomers via interaction with the C-terminal domain. Protein Sci 2004; 13(12):3245–3252.
    84 Hoyer W, Cherny D, Subramaniam V, Jovin TM. Impact of the acidic C-terminal region comprising amino acids 109-140 on alpha-synuclein aggregation in vitro. Biochemistry2004; 43(51):16233–16242.
    85 Howitt J, Hill AF. Exosomes in the pathology of neurodegenerative diseases. J Biol Chem 2016; 291(52):26589–26597.
    86 Lee HJ, Cho ED, Lee KW, Kim JH, Cho SG, Lee SJ. Autophagic failure promotes the exocytosis and intercellular transfer of alpha-synuclein. Exp Mol Med 2013; 45(5):e22.
    87 Fader C, Sanchez D, Furlan M, Colombo M. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in K562 cells. Traffic 2008; 9(2):230–250.
    88 Ramirez A, Heimbach A, Gründemann J, Stiller B, Hampshire D, Cid LP, Goebel I, Mubaidin AF, Wriekat AL, Roeper J, Al-Din A, Hillmer AM, Karsak M, Liss B, Woods CG,Behrens MI, Kubisch C. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 2006; 38(10):1184–1191.
    89 Tsunemi T, Hamada K, Krainc D. ATP13A2/PARK9 regulates secretion of exosomes andα-synuclein. J Neurosci2014; 34(46):15281–15287.
    90 Kong SM, Chan BK, Park JS, Hill KJ, Aitken JB, Cottle L,Farghaian H, Cole AR, Lay PA, Sue CM, Cooper AA. Parkinson’s disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotesα-Synuclein externalization via exosomes. Hum Mol Genet 2014; 23(11):2816–2833.
    91 Hasegawa T, Konno M, Baba T, Sugeno N, Kikuchi A,Kobayashi M, Miura E, Tanaka N, Tamai K, Furukawa K.The AAA-ATPase VPS4 regulates extracellular secretion and lysosomal targeting ofα-synuclein. PLoS One 2011;6 (12):e29460.
    92 Breda C, Nugent ML, Estranero JG, Kyriacou CP, Outeiro TF, Steinert JR, Giorgini F. Rab11 modulatesα-synucleinmediated defects in synaptic transmission and behaviour.Hum Mol Genet 2015; 24(4):1077–1091.
    93 Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 2016; 8(6):595–608.
    94 Hardy J, Duff K, Hardy KG, Pereztur J, Hutton M. Genetic dissection of Alzheimer’s disease and related dementias:amyloidand its relationship to tau. Nat Neurosci 1998; 1(5):355 –358.
    95 Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, Eersel JV,W?lfing H, Chieng BC, Christie MDJ, Napier IA. Dendritic function of Tau mediates amyloid-βtoxicity in Alzheimer’s disease mouse models. Cell 2010; 142(3):387–397.
    96 Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease:progress and problems on the road to therapeutics.Science 2002; 297(5580):353–356.
    97 Langer F, Eisele YS, Fritschi SK, Staufenbiel M, Walker LC, Jucker M. Soluble Aβseeds are potent inducers of cerebralβ-amyloid deposition. J Neurosci 2011; 31(41):14488–14495.
    98 Kane MD, Lipinski WJ, Callahan MJ, Bian F, Durham RA,Schwarz RD, Roher AE, Walker LC. Evidence for seeding of beta-amyloid by intracerebral infusion of Alzheimer brain extracts in beta-amyloid precursor protein-transgenic mice. J Neurosci 2000; 20(10):3606–3611.
    99 Hamaguchi T, Eisele YS, Varvel NH, Lamb BT, Walker LC,Jucker M. The presence of Aβseeds, and not age per se, is critical to the initiation of Aβdeposition in the brain. Acta Neuropathol 2012; 123(1):31–37.
    100 Sinha MS, Ansellschultz A, Civitelli L, Hildesj?C, Larsson M, Lannfelt L, Ingelsson M, Hallbeck M. Alzheimer’s disease pathology propagation by exosomes containing toxic amyloid-beta oligomers. Acta Neuropathol 2018; 136(600–607 ):41–56.
    101 Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD,Verkade P, Kai S. Alzheimer’s diseaseβ-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A 2006; 103(30):11172–11177.
    102 Sharples RA, Vella LJ, Nisbet RM, Naylor R, Perez K,Barnham KJ, Masters CL, Hill AF. Inhibition of gammasecretase causes increased secretion of amyloid precursor protein C-terminal fragments in association with exosomes.FASEB J 2008; 22(5):1469–1478.
    103 Yuyama K, Yamamoto N, Yanagisawa K. Accelerated release of exosome‐associated GM1 ganglioside(GM1)by endocytic pathway abnormality:another putative pathway for GM1-induced amyloid fibril formation. J Neurochem2008; 105(1):217–224.
    104 Yuyama K, Sun H, Mitsutake S, Igarashi Y. Sphingolipidmodulated exosome secretion promotes clearance of amyloid-βby microglia. J Biol Chem 2012; 287(14):10977–10989.
    105 Dinkins MB, Dasgupta S, Wang G, Zhu G, Bieberich E.Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol Aging 2014; 35(8):1792–1800.
    106 Vandermeeren M, Mercken M, Vanmechelen E, Six J, Andr,Eacute VDV, Martin JJ, Cras P. Detection of proteins in normal and Alzheimer’s disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbent assay. J Neurochem1993; 61(5):1828–1834.
    107 Bancher C, Braak H, Fischer P, Jellinger KA. Neuropathological staging of Alzheimer lesions and intellectual status in Alzheimer’s and Parkinson’s disease patients. Neurosci Lett 1993; 162(1–2):179–182.
    108 Guo JL, Lee VM. Neurofibrillary tangle-like tau pathology induced by synthetic tau fibrils in primary neurons overexpressing mutant tau. FEBS Lett 2013; 587(6):717–723.
    109 Iba M, Guo JL, McBride JD, Zhang B, Trojanowski JQ,Lee VM. Synthetic Tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy. J Neurosci 2013; 33(3):1024–1037.
    110 Clavaguera F, Bolmont T, Crowther RA, Abramowski D,Frank S, Probst A, Fraser G, Stalder AK, Beibel M,Staufenbiel M, Jucker M, Goedert M, Tolnay M. Transmission and spreading of tauopathy in transgenic mouse brain.Nat Cell Biol 2009; 11(7):909–913.
    111 Lasagnareeves CA, Castillocarranza DL, Sengupta U,Guerreromunoz MJ, Kiritoshi T, Neugebauer V, Jackson GR, Kayed R. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Scic Rep 2012;2(10):700.
    112 Polanco JC, Li C, Durisic N, Sullivan R, G?tz J. Exosomes taken up by neurons hijack the endosomal pathway to spread to interconnected neurons. Acta Neuropathol Commun 2018; 6(1):10.
    113 Wang B, Han S. Exosome-associated tau exacerbates brain functional impairments induced by traumatic brain injury in mice. Mol Cell Neurosci 2018; 88:158–166.
    114 Saman S, Kim W, Raya M, Visnick Y, Miro S, Saman S,Jackson B, Mckee AC, Alvarez VE, Lee NC. Exosomeassociated Tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J Biol Chem 2012; 287(6):3842–3849.
    115 Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T,Wolozin B, Butovsky O, Kügler S, Ikezu T. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 2015; 18(11):1584–1593.
    116 Tan RH, Ke YD, Ittner LM, Halliday GM. ALS/FTLD:experimental models and reality. Acta Neuropathol 2017;133 (2):177–196.
    117 Münch C, O’Brien J, Bertolotti A. Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci U S A 2011; 108(9):3548–3553.
    118 Nonaka T, Masudasuzukake M, Arai T, Hasegawa Y, Akatsu H, Obi T, Yoshida M, Murayama S, Mann DMA, Akiyama H. Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep 2013; 4(1):124–134.
    119 Hanspal MA, Dobson CM, Yerbury JJ, Kumita JR. The relevance of contact-independent cell-to-cell transfer of TDP-43 and SOD1 in amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 2017; 1863(11):2762–2771.
    120 Ding X, Ma M, Teng J, Teng RKF, Shuang Z, Yin J,Fonkem E, Huang JH, Wu E, Wang X. Exposure to ALSFTD-CSF generates TDP-43 aggregates in glioblastoma cells through exosomes and TNTs-like structure. Oncotarget2015; 6(27):24178–24191.
    121 Iguchi Y, Eid L, Parent M, Soucy G, Bareil C, Riku Y,Kawai K, Takagi S, Yoshida M, Katsuno M, Sobue G,Julien JP. Exosome secretion is a key pathway for clearance of pathological TDP-43. Brain 2016; 139(Pt 12):3187–3201.
    122 Silverman JM, Fernando SM, Grad LI, Hill AF, Turner BJ,Yerbury JJ, Cashman NR. Disease mechanisms in ALS:Misfolded SOD1 transferred through exosome-dependent and exosome-independent pathways. Cell Mol Neurobiol2016; 36(3):1–5.
    123 Grad LI, Yerbury JJ, Turner BJ, Guest WC, Pokrishevsky E,O'Neill MA, Yanai A, Silverman JM, Zeineddine R, Corcoran L, Kumita JR, Luheshi LM, Yousefi M, Coleman BM, Hill AF, Plotkin SS, Mackenzie IR, Cashman NR. Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and-independent mechanisms. Proc Natl Acad Sci U S A 2014; 111(9):3620–3625.
    124 Arellano-Anaya ZE, Huor A, Leblanc P, Lehmann S, Provansal M, Raposo G, Andréoletti O, Vilette D. Prion strains are differentially released through the exosomal pathway.Cell Mol Life Sci 2015; 72(6):1185–1196.
    125 Stuendl A, Kunadt M, Kruse N, Bartels C, Moebius W,Danzer KM, Mollenhauer B, Schneider A. Induction ofα-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies. Brain 2016; 139(2):481–494.
    126 Blennow K, Zetterberg H. Understanding Biomarkers of Neurodegeneration:Ultrasensitive detection techniques pave the way for mechanistic understanding. Nat Med2015; 21(3):217–219.
    127 Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C,Li Y, Aro P, Dator R, He C. Plasma exosomalα-synuclein is likely CNS-derived and increased in Parkinson’s disease.Acta Neuropathol 2014; 128(5):639–650.
    128 Mckeever PM, Schneider R, Taghdiri F, Weichert A,Multani N, Brown RA, Boxer AL, Karydas A, Miller B,Robertson J. MicroRNA expression levels are altered in the cerebrospinal fluid of patients with young-onset Alzheimer’s disease. Mol Neurobiol 2018; 55(12):8826–8841.
    129 Cao XY, Lu JM, Zhao ZQ, Li MC, Lu T, An XS, Xue LJ.MicroRNA biomarkers of Parkinson’s disease in serum exosome-like microvesicles. Neurosci Lett 2017; 644:94–99.
    130 Yang TT, Geng LC, Chao GS, Yi Z, Chang WP. The serum exosome derived microRNA-135a,-193b, and-384 were potential Alzheimer’s disease biomarkers. Biomed Environ Sci 2018; 31(2):87–96.
    131 Ohno SI, Kuroda M. Exosome-Mediated Targeted Delivery of miRNAs. Springer New York, 2016.
    132 Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes:current perspectives and future challenges. Acta Pharm Sin B 2016; 6(4):287–296.
    133 Andaloussi SE, Lakhal S, M?ger I, Wood MJA. Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 2013; 65(3):391–397.
    134 Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the brain by systemic injection of targeted exosomes. Nat Biotechnol 2011; 29(4):341–345.
    135 Cooper JM, Wiklander PB, Nordin JZ, Alshawi R, Wood MJ, Vithlani M, Schapira AH, Simons JP, Elandaloussi S,Alvarezerviti L. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov Disord 2014; 29(12):1476–1485.
    136 Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG,He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 2015; 207:18–30.
    137 Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L, Miller D, Zhang HG. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 2011; 19(10):1769–1779.
    138 Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S,Grizzle W, Miller D, Zhang HG. A novel nanoparticle drug delivery system:the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther2010; 18(9):1606–1614.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700