县域尺度土壤铜的有效性及相关影响因素评估
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Assessment of the Availability of Soil Copper and Related Influencing Factors at a County Scale
  • 作者:李锦芬 ; 瞿明凯 ; 刘刚 ; 黄标
  • 英文作者:LI Jin-fen;QU Ming-kai;LIU Gang;HUANG Biao;Key Laboratory of Soil Environment and Pollution Remediation,Institute of Soil Science,Chinese Academy of Sciences;School of Environmental Science and Engineering,Nanjing University of Information Science and Technology;
  • 关键词:土壤 ; 有效铜 ; 调控 ; 空间非平稳性 ; 地理加权回归
  • 英文关键词:soil;;available copper;;regulation;;spatial nonstationary;;geographic weighted regression
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:中国科学院南京土壤研究所土壤环境与污染修复重点实验室;南京信息工程大学环境科学与工程学院;
  • 出版日期:2017-08-23 10:29
  • 出版单位:环境科学
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金项目(41401523);; 江苏省自然科学基金项目(BK20141055);; 南京土壤研究所“一三五”计划和领域前沿项目(ISSASIP1623)
  • 语种:中文;
  • 页:HJKZ201801049
  • 页数:8
  • CN:01
  • ISSN:11-1895/X
  • 分类号:366-373
摘要
了解土壤重金属相关属性(如全量、有效态含量等)的空间分布状况及相关环境因子对其有效性的空间非平稳影响,对土壤重金属风险区域的划定和空间调控措施的制定具有重要作用.本研究基于张家港市357个土壤样本数据,首先探讨了土壤类型和土地利用类型对土壤有效铜的影响.然后采用普通克里格预测了该区域土壤全铜和有效铜的含量,计算得到其有效性比率(即有效铜/全铜)的空间分布状况,并结合有效铜及其有效性比率划定了土壤有效铜的风险调控区域.最后,采用一种空间局部回归技术,地理加权回归(GWR)探索了土壤有效铜与3个主要土壤因子(即土壤全铜、pH和SOM)之间的空间局部回归关系.结果表明,土壤类型和土地利用类型均对土壤有效铜含量存在一定程度的影响.土壤铜的有效性比率具有较强的空间异质性,其变化范围在13.56%~29.15%.模型对比结果显示,GWR模型较传统的普通最小二乘回归(OLSR)模型具有更高的拟合精度(即较大的决定系数R2,较小的AICc信息准则和残差平方和).GWR分析结果显示,各土壤因子对土壤有效铜的影响在空间上是非稳态的.GWR模型能有效地揭示相关土壤属性对土壤有效铜的空间非平稳影响,其结果可解释局部区域土壤有效铜累积的原因.基于上述分析结果,可以为该研究区域内土壤有效铜的调控提供具体的空间决策支持.
        Understanding the spatial distribution of total copper,available copper,and the spatial non-stationary relationships between available copper and relevant environmental factors is important for the delineation of soil risk areas and the development of related control measures.This study was conducted in Zhangjiagang County of Jiangsu Province,China.The risk status for soil copper was assessed based on 357 soil samples in the study area.The effects of soil type and land-use type on the concentration of available soil copper were discussed first.Then,ordinary kriging was adopted to map the spatial distribution patterns of the total soil copper and available soil copper,and the spatial distribution map of the copper availability ratio(i.e.,available copper/total copper) was also developed for the study area.The risk areas for soil copper were delineated based on the spatial distribution patterns of available soil copper and the copper availability ratio.Finally,a new spatial local regression technique,geographic weighted regression(GWR),was used to explore the local spatial regression relationships between available copper and its three main impact factors(i.e.,total soil copper,soil pH,and SOM).Results showed that both soil type and land-use type had some effect on the concentration of available soil copper.The copper availability ratio had a strong spatial heterogeneity,with the higher values mainly in the northeast,southeast,and northwest of the study area and the lower values mainly in the middle and southwest of the study area.The range of the copper availability ratio is 13.56% to 29.15%.The results of the comparison of the traditional ordinary least squares regression(OLSR) and GWR showed that the GWR model had higher fitting accuracy than the OLSR model [i.e.,a larger decision coefficient R2,and smaller corrected Akaike information criteria(AICc)and the sum of squares of residuals]in modeling the relationships between available copper and its three main impact factors.The GWR analysis showed that the effect of soil factors on the concentration of soil available copper was non-stationary.The GWR could effectively reveal the spatial non-stationary influence of the related soil factors on the concentration of available soil copper,and the results could explain the reasons for the accumulation of available soil copper in local areas.Potential risk areas for available soil copper were delineated based on the copper availability ratio and the concentration of available soil copper in the study area.The results should be crucial data for developing specific control measures for soil copper at a regional scale.
引文
[1]Adrees M,Ali S,Rizwan M,et al.The effect of excess copper on growth and physiology of important food crops:a review[J].Environmental Science and Pollution Research,2015,22(11):8148-8162.
    [2]廖琴,南忠仁,王胜利,等.黑河流域中部土壤微量元素有效态含量的空间变异及丰缺评价[J].干旱区资源与环境,2012,26(2):108-113.Liao Q,Nan Z R,Wang S L,et al.Spatial variability and abundance evaluation of available microelements in the middle reaches of Heihe River[J].Journal of Arid Land Resources and Environment,2012,26(2):108-113.
    [3]Kopittke P M,Menzies N W.Effect of Cu toxicity on growth of Cowpea(Vignaunguiculata)[J].Plant and Soil,2006,279(1-2):287-296.
    [4]Yruela I.Copper in plants:acquisition,transport and interactions[J].Functional Plant Biology,2009,36(5):409-430.
    [5]Wightwick A M,Salzman S A,Reichman S M,et al.Effects of copper fungicide residues on the microbial function of vineyard soils[J].Environmental Science and Pollution Research,2013,20(3):1574-1585.
    [6]Wang H,Liu Y M,Qi Z M,et al.The estimation of soil trace elements distribution and soil-plant-animal continuum in relation to trace elements status of sheep in Huangcheng Area of Qilian Mountain Grassland,China[J].Journal of Integrative Agriculture,2014,13(1):140-147.
    [7]施亚星,吴绍华,周生路,等.基于环境效应的土壤重金属临界负荷制图[J].环境科学,2015,36(12):4600-4608.Shi Y X,Wu S H,Zhou S L,et al.Mapping critical loads of heavy metals for soil based on different environmental effects[J].Environmental Science,2015,36(12):4600-4608.
    [8]Wu C F,Luo Y M,Zhang L M.Variability of copper availability in paddy fields in relation to selected soil properties in southeast China[J].Geoderma,2010,156(3-4):200-206.
    [9]Shaheen S M,Tsadilas CD,Rinklebe J R.A review of the distribution coefficients of trace elements in soils:influence of sorption system,element characteristics,and soil colloidal properties[J].Advances in Colloid and Interface Science,2013,201-202:43-56.
    [10]章骅,何品晶,吕凡,等.重金属在环境中的化学形态分析研究进展[J].环境化学,2011,30(1):130-137.Zhang H,He P J,LüF,et al.A review on the methods for investigating heavy metal speciation in environmental chemistry[J].Environmental Chemistry,2011,30(1):130-137.
    [11]Bravin M N,Garnier C,Lenoble V,et al.Root-induced changes in p H and dissolved organic matter binding capacity affect copper dynamic speciation in the rhizosphere[J].Geochimicaet Cosmochimica Acta,2012,84(1):256-268.
    [12]王小庆,李菊梅,韦东普,等.土壤中铜生态阈值的影响因素及其预测模型[J].中国环境科学,2014,34(2):445-451.Wang X Q,Li J M,Wei D P,et al.Major soil factors affecting ecological threshold for copper and the predictable models[J].China Environmental Science,2014,34(2):445-451.
    [13]Bravo S,Amorós J A,Pérez-de-los-Reyes C,et al.Influence of the soil p H in the uptake and bioaccumulation of heavy metals(Fe,Zn,Cu,Pb and Mn)and other elements(Ca,K,Al,Sr and Ba)in vine leaves,Castilla-La Mancha(Spain)[J].Journal of Geochemical Exploration,2017,174:79-83.
    [14]Likar M,Vogel-Miku2 K,Potisek M,et al.Importance of soil and vineyard management in the determination of grapevine mineral composition[J].Science of the Total Environment,2015,505:724-731.
    [15]Teng Y G,Feng D,Wu J,et al.Distribution,bioavailability,and potential ecological risk of Cu,Pb,and Zn in soil in a potential groundwater source area[J].Environmental Monitoring and Assessment,2015,187:293.
    [16]Yang Q Y,Jiang Z C,Li W J,et al.Prediction of soil organic matter in peak-cluster depression region using kriging and terrain indices[J].Soil and Tillage Research,2014,144:126-132.
    [17]Gómez-Armesto A,Carballeira-Díaz J,Pérez-Domínguez P,et al.Copper content and distribution in vineyard soils from Betanzos(A Coru1a,Spain)[J].Spanish Journal of Soil Science,2015,5(1):60-71.
    [18]刘永红,倪中应,谢国雄,等.浙西北丘陵区农田土壤微量元素空间变异特征及影响因子[J].植物营养与肥料学报,2016,22(6):1710-1718.Liu Y H,Ni Z Y,Xie G X,et al.Spatial variability and impacting factors of trace elements in hilly region of cropland in northwestern Zhejiang Province[J].Journal of Plant Nutrition and Fertilizer,2016,22(6):1710-1718.
    [19]万红友,周生路,陈杰,等.苏南经济快速发展区昆山市土壤铅形态含量及其影响因素[J].中国生态农业学报,2012,20(1):87-92.Wan H Y,Zhou S L,Chen J,et al.Quantitative analysis of factors influencing soil Pb content in the high economic development region of South Jiangsu Province:a case study in Kunshan City[J].Chinese Journal of Eco-Agriculture,2012,20(1):87-92.
    [20]Zhang Y,Cai Y,Wang C Q,et al.Characters and influencing factors of the distribution of cultivated available soil Fe,Mn,Cu and Zn in Xichang City,Sichuan Province,China[J].Journal of Geography and Geology,2012,4(2):115-123.
    [21]Zhu H F,Hu W,Bi R,et al.Scale-and location-specific relationships between soil available micronutrients and environmental factors in the Fen River basin on the Chinese Loess Plateau[J].Catena,2016,147:764-772.
    [22]Kumar S,Lal R,Liu D S.A geographically weighted regression kriging approach for mapping soil organic carbon stock[J].Geoderma,2012,189-190:627-634.
    [23]鲍士旦.土壤农化分析[M].(第三版).北京:中国农业出版社,2000.
    [24]Qu M K,Li W D,Zhang C R,et al.Spatially nonstationary relationships between copper accumulation in rice grain and some related soil properties in paddy fields at a regional scale[J].Soil Science Society of America Journal,2014,78(5):1765-1774.
    [25]史舟,李艳.地统计学在土壤学中的应用[M].北京:中国农业出版社,2006.
    [26]Lark R M,Webster R.Geostatistical mapping of geomorphic variables in the presence of trend[J].Earth Surface Processes and Landforms,2006,31(7):862-874.
    [27]瞿明凯,李卫东,张传荣,等.地理加权回归及其在土壤和环境科学上的应用前景[J].土壤,2014,46(1):15-22.Qu M K,Li W D,Zhang C R,et al.Geographically weighted regression and its application prospect in soil and environmental sciences[J].Soils,2014,46(1):15-22.
    [28]Tu J,Xia Z G.Examining spatially varying relationships between land use and water quality using geographically weighted regression I:model design and evaluation[J].Science of the Total Environment,2008,407(1):358-378.
    [29]Fotheringham A S,Brunsdon C,Charlton M.Geographically weighted regression:the analysis of spatially varying relationships[M].John Wiley&Sons,Chichester,UK.2002.
    [30]廖启林,刘聪,许艳,等.江苏省土壤元素地球化学基准值[J].中国地质,2011,38(5):1363-1378.Liao Q L,Liu C,Xu Y,et al.Geochemical baseline values of elements in soil of Jiangsu Province[J].Geology in China,2011,38(5):1363-1378.
    [31]GB 15618-1995,中国环境土壤质量标准[S].
    [32]徐丹,刘昌华,蔡太义,等.农田土壤有机质和全氮三维空间分布特征研究[J].农业机械学报,2015,46(12):157-163.Xu D,Liu C H,Cai T Y,et al.3D spatial distribution characteristics of soil organic matter and total nitrogen in farmland[J].Transactions of the Chinese Society for Agricultural Machinery,2015,46(12):157-163.
    [33]Inaba S,Takenaka C.Changes in chemical species of copper added to brown forest soil in Japan[J].Water,Air,and Soil Pollution,2005,162(1-4):285-293.
    [34]李锦芬,瞿明凯,黄标,等.区域土壤CEC与相关控制因子的空间非平稳关系评估[J].土壤学报,2017,54(3):639-647.Li J F,Qu M K,Huang B,et al.Spatially non-stationary relationships between cation exchange capacity andrelated control factors[J].Acta Pedologica Sinica,2017,54(3):639-647.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700