Pound-Drever-Hall激光稳频系统线性化复频域建模及分析研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Linearized complex frequency domain modeling and analysis of Pound-Drever-Hall laser frequency stabilization system
  • 作者:苏娟 ; 焦明星 ; 张凌晨 ; 邢俊红
  • 英文作者:SU Juan;JIAO Mingxing;ZHANG Lingchen;XING Junhong;School of Mechanical and Precision Instrument Engineering,Xi'an University of Technology;Key Laboratory of Photoelectric Logging and Detecting of Oil and Gas,Ministry of Education,Xi'an Shiyou University;
  • 关键词:Pound-Drever-Hall稳频 ; 线性化复频域模型 ; 稳态误差 ; 扰动误差 ; 暂态响应
  • 英文关键词:Pound-Drever-Hall stabilization;;linearized complex frequency domain model;;steady-state error;;perturbation error;;transient response
  • 中文刊名:XALD
  • 英文刊名:Journal of Xi'an University of Technology
  • 机构:西安理工大学机械与精密仪器工程学院;西安石油大学光电油气测井与检测教育部重点实验室;
  • 出版日期:2018-06-30
  • 出版单位:西安理工大学学报
  • 年:2018
  • 期:v.34
  • 基金:国家自然科学基金资助项目(51175421,61205135)
  • 语种:中文;
  • 页:XALD201802013
  • 页数:6
  • CN:02
  • ISSN:61-1294/N
  • 分类号:77-82
摘要
Pound-Drever-Hall(PDH)稳频系统利用了调制光谱技术和外差探测技术,将激光频率锁定在F-P参考腔的中心频率上以实现稳频。鉴频曲线的线性区为PDH系统的频率快速捕获区。在此区域内,PDH误差信号与激光频率差成正比。本文建立了该频率快速捕获区的PDH稳频系统线性化复频域模型,研究了系统的稳定性和稳态误差。F-P参考腔作为稳频基准,其干扰对系统稳频性能影响极大。将F-P参考腔干扰作为噪声源,分析了系统的扰动误差。分析了系统动态性能,研究了频率锁定的暂态响应过程,给出了系统参数设计依据。
        The Pound-Drever-Hall(PDH)laser frequency stabilization system is based on frequency modulation spectroscope technology and optical heterodyne detection technology,locking laser frequency at the centre frequency of F-P reference cavity.The linear region of frequency discrimination curve is in a fast frequency pull-in range.In this zone,the PDH error is proportional to the frequency bias,with a linearized complex frequency domain control model of PDH laser frequency stabilization system developed.Based on the model,the stability and steady-state error is analyzed.Serving as the frequency standard,the instability of F-P reference cavity limits the frequency stabilization accuracy greatly.The perturbation error caused by noises of F-P reference cavity is analyzed,with the dynamic characteristic and transient response process studied.A guideline for the parameter selection of PDH laser frequency stabilization system is given.
引文
[1]OSKAY W H,ITANO W M,BERGQUIST J C.Measurement of the 199 Hg+5d96s2 2 D5/2electric quadrupole moment and a constraint on the quadrupole shift[J].Physical Review Letters,2005,94:163001.
    [2]ALNIS J,MATVEEV A,KOLACHEVSKY N,et al.Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities[J].Physical Review A,2008,77(5):053809.
    [3]KESSLER T,HAGEMANN C,GREBING C,et al.A sub-40-mHz-linewidth laser based on a silicon singlecrystal optical cavity[J].Nature Photonics,2011,6(10):687-692.
    [4]BLOOM B J,NICHOLSON T L,WILLIAMS J R,et al.An optical lattice clock with accuracy and stability at the 10-18 level[J].Nature,2014,506(7486):71-75.
    [5]XU Zhichao,PAN Duo,ZHUANG Wei,et al.Experimental scheme of 633nm and 1359nm good-bad cavity dual-wavelength active optical frequency standard[J].Chinese Physics Letters,2015,32(8):083201.
    [6]SHANG Junjuan,CAO Jian,CUI Kaifeng,et al.A compact,sub-Hertz linewidth 729nm laser for a miniaturized40Ca+optical clock[J].Optics Communications,2017,382(1):410-414.
    [7]WILLKE B,DANZMANN K,FREDE M,et al.Stabilized lasers for advanced gravitational wave detectors[J].Classical and Quantum Gravity,2008,25(11):114040.
    [8]HARRY G M,LIGO Scientific Collaboration.Advanced LIGO:the next generation of gravitational wave detectors[J].Classical and Quantum Gravity,2010,27(8):084006.
    [9]FORTIER T M,KIRCHNER M S,QUINLAN F,et al.Generation of ultrastable microwaves via optical frequency division[J].Nature Photonics,2011,5(7):425-429.
    [10]任兆麟,王叶兵,韩建新,等.锶原子三重态双耦合场下的原子相干谱观测[J].光学学报,2017,37(4):0402001.REN Zhaolin,WANG Yebing,HAN Jianxin,et al.Observation of atomic coherence in strontium tripletwith double coupling fields[J].Acta Optica Sinica,2017,37(4):0402001.
    [11]HERRMANN S,SENGER A,MHLE K,et al.Rotating optical cavity experiment testing Lorentz invariance at the 10-17 level[J].Physical Review D,2010,80(10):105011.
    [12]孙旭涛,陈卫标.注入锁定激光器的边带锁频技术稳频系统优化分析[J].光子学报,2008,37(9):1748-1752.SUN Xutao,CHEN Weibiao.Optimization of PoundDrever-Hall frequency stabilization of injection-locked laser[J].Acta Photonica Sinica,2008,37(9):1748-1752.
    [13]LAM T T Y,SLAGMOLEN B J J,CHOW J H,et al.Digital laser frequency stabilization using an optical cavity[J].IEEE Journal of Quantum Electronics,2010,46(8):1178-1183.
    [14]POUND R V.Electronic frequency stabilization of microwave oscillators[J].Review of Scientific Instruments,1946,17(11):490-505.
    [15]DREVER R W P,HALL J L,KOWALSKI F V,et al.Laser phase and frequency stabilization using an optical resonator[J].Applied Physics B Photophysics and Laser Chemistry,1983,31(2):97-105.
    [16]BLACK E D.An introduction to Pound-Drever-Hall laser frequency stabilization[J].American Journal of Physics,2001,69(1):79-87.
    [17]吴玛.驱动PZT的电压控制电路[D].长春:吉林大学,2007:27-30.WU Ma.High voltage control circuit to drive PZT[D].Changchun:Jilin University,2007:27-30.
    [18]张厥盛,郑继禹,万心平.锁相技术[M].西安:西安电子科技大学出版社,1994:64-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700