多级复氧反应-垂直流人工湿地深度处理煤矿酸性废水
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advanced treatment of acid mine drainage by multi-stage reoxygenation reaction-vertical flow constructed wetland
  • 作者:龙中 ; 吴攀 ; 黄家琰 ; 黄臣臣 ; 康爽 ; 张瑞雪
  • 英文作者:LONG Zhong;WU Pan;HUANG Jiayan;HUANG Chenchen;KANG Shuang;ZHANG Ruixue;College of Resources and Environmental Engineering, Guizhou University;Key Laboratory of Karst Environment and Geohazard, Ministry of Land and Resources;
  • 关键词:煤矿酸性废水 ; 多级复氧反应 ; 垂直流人工湿地 ; 立体弹性填料
  • 英文关键词:acid mine drainage;;multi-stage reoxygenation reaction;;vertical flow constructed wetland;;stereo elastic filler
  • 中文刊名:HJJZ
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:贵州大学资源与环境工程学院;国土资源部喀斯特环境与地质灾害重点实验室;
  • 出版日期:2019-06-05 10:45
  • 出版单位:环境工程学报
  • 年:2019
  • 期:v.13
  • 基金:贵州省科技计划项目(黔科合[2016]支撑2834号);; 国家自然科学基金委员会-贵州省人民政府喀斯特科学研究中心项目(U1612442);; 贵州省特色重点实验室项目(黔教合KY字[2015]330);; 贵州省学科建设项目(黔学位合字ZDXK[2016]11)
  • 语种:中文;
  • 页:HJJZ201906018
  • 页数:9
  • CN:06
  • ISSN:11-5591/X
  • 分类号:137-145
摘要
针对贵阳市朱昌镇茶饭村废弃石硐煤矿废水Fe、Mn浓度超标的问题,通过构建多级复氧反应-垂直流人工湿地系统对废水进行综合治理,并在多级复氧反应池内添加立体弹性填料对系统进行优化;研究系统优化前后对Fe、Mn、SO_4~(2-)及重金属的去除效果。结果表明:pH从进水的5.60~6.58上升到出水的6.37~7.45,系统能有效去除Fe、Mn,Fe的去除率在99.10%以上,Mn去除效率为69.80%~100%,对Cu、Zn、Cd、As、Pb、Cr也具有较好的去除效果,但对SO_4~(2-)的去除率仅为3.06%;添加立体弹性填料后沉淀池中SS浓度显著降低,Fe、Mn的去除率均可达到100%,Cu、Zn、Cd、As、Pb、Cr的去除率均有所提高,但对SO_4~(2-)的去除效果仍不明显。多级复氧反应-垂直流人工湿地系统对煤矿废水具有良好的处理效果,添加立体弹性填料是优化系统的一项有效措施。
        In view of the problems of excessive Fe and Mn in the wastewater from abandoned Shidong coalfield in Chafan Village, Zhuchang Town, Guiyang City, a multi-stage reoxygenation reaction-vertical flow constructed wetland system was built for the comprehensive management of wastewater, and the stereo elastic filler was also added in multi-stage reoxygenation reaction tanks to optimize the system. The removal efficiencies of Fe, Mn,SO_4~(2-) and heavy metals were compared between the systems before and after optimization. The results showed that the pH increased from 5.60~6.58 for system influent to 6.37~7.45 for system effluent. The system had good performances on Fe and Mn removal, and their removal efficiencies were above 99.10% and 69.80%~100%,respectively. The relative good removal performance also occurred for Cu, Zn, Cd, As, Pb and Cr, but the removal efficiency of SO_4~(2-) was only 3.06%. The addition of stereo elastic filler in the reaction tank could significantly reduce SS concentration in the sedimentation tank, the removal efficiencies of Fe and Mn could reach 100%, and the removal efficiencies of Cu, Zn, Cd, As, Pb and Cr could also be improved, but SO_4~(2-) removal effect was still not satisfactory. The multi-stage reoxygenation reaction-vertical flow constructed wetland system has good performance on the treatment of coal mine wastewater, and stereo elastic filler addition in the reaction tank is an efficient measure for system optimization.
引文
[1] EVANGELOU V P, ZHANG Y L. A review:Pyrite oxidation mechanisms and acid mine drainage prevention[J]. Critical Reviews in Environmental Control, 1995, 25(2):141-199.
    [2] WU P, TANG C Y, LIU C Q, et al. Geochemical distribution and removal of As, Fe, Mn and Al in a surface water system affected by acid mine drainage at a coalfield in Southwestern China[J]. Environmental Geology, 2009, 57(7):1457-1467.
    [3]廖建文,陈三雄,谢江松,等.基于沟渠库厂联合运用的金属矿区酸性废水防控措施研究[J].水土保持通报, 2018, 38(5):288-292.
    [4] JOHNSON D B, HALLBERG K B. Acid mine drainage remediation options:A review[J]. Science of the Total Environment,2005, 338(1):3-14.
    [5] YOUNGER P L, BANWART S A, HEDIN R S. Mine Water Hydrology[M]. Springer Netherlands:Springer, 2002.
    [6]张瑞雪,吴攀,杨艳,等.贵州煤矿酸性废水“被动处理”技术的新方法探讨[J].地球与环境, 2010, 38(2):250-254.
    [7] SKOUSEN J, ZIPPER C E, ROSE A, et al. Review of passive systems for acid mine drainage treatment[J]. Mine Water and the Environment, 2017, 36(1):133-153.
    [8] HEDIN R, WEAVER T, WOLFE N, et al. Passive treatment of acidic coal mine drainage:The Anna S mine passive treatment complex[J]. Mine Water and the Environment, 2010, 29(3):165-175.
    [9] ZIPPER C E, SKOUSEN J G. Influent water quality affects performance of passive treatment systems for acid mine drainage[J]. Mine Water and the Environment, 2010, 29(2):135-143.
    [10]熊玲,张瑞雪,吴攀,等.碳酸盐岩处理煤矿酸性废水的实验研究[J].水处理技术, 2010, 36(8):45-48.
    [11]杨绍章,吴攀,张瑞雪,等.有氧垂直折流式反应池处理煤矿酸性废水[J].环境工程学报, 2011, 5(4):789-794.
    [12]国家环境保护总局.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002.
    [13] CRAVOTTA III C A, BRADY K B C, ROSE A W, et al. Frequency distribution of the pH of coal-mine drainage in Pennsylvania[C]//U.S.Geological Survey Substances. 1999 Toxic Substances Hydrology Program-Proceedings of the Technical Meeting.Morganwalp D W, 1999:313-324.
    [14]中华人民共和国建设部.生活饮用水水源水质标准:CJ 3020-1993[S].北京:华文出版社, 1994.
    [15] SANTOMARTINO S, WEBB J A. Estimating the longevity of limestone drains in treating acid mine drainage containing high concentrations of iron[J]. Applied Geochemistry, 2007, 22(11):2344-2361.
    [16] CRAVOTTA III C A, TRAHAN M K.Limestone drains to increase pH and remove dissolved metals from acidic mine drainage[J]. Applied Geochemistry, 1999, 14(5):581-606.
    [17] VERHOEVEN J T A, MEULEMAN A F M.Wetlands for wastewater treatment:Opportunities and limitations[J]. Ecological Engineering, 1999, 12(1/2):5-12.
    [18]梁继东,周启星,孙铁珩.人工湿地污水处理系统研究及性能改进分析[J].生态学杂志, 2003, 22(2):49-55.
    [19]徐钟际,徐敏荣,徐玮,等.煤矿废水Fe、Mn处理技术研究[J].环保科技, 1999, 5(1):5-9.
    [20] ZIPPER C, SKOUSEN J. Passive Treatment of Acid Mine Drainage[M]. New Jersey:John Wiley&Sons Inc., 2011.
    [21]汤波.潜流人工湿地处理矿山废水的实验研究[J].科学技术与工程, 2014, 14(13):306-311.
    [22]刘晶晶.模拟人工湿地系统处理酸性重金属废水的效能及机理研究[D].湘潭:湘潭大学, 2010.
    [23]王凯雄,朱优峰.水化学[M].北京:化学工业出版社, 2001.
    [24] HEM J D. Reactions of metal ions at surfaces of hydrous iron oxide[J]. Geochimica et Cosmochimica Acta, 1977, 41(4):527-538.
    [25] TAN H, ZHANG G X, HEANEY P J, et al.Characterization of manganese oxide precipitates from appalachian coal mine drainage treatment systems[J]. Applied Geochemistry, 2010, 25(3):389-399.
    [26] BENATTI C T, TAVARES C R, LENZI E. Sulfate removal from waste chemicals by precipitation[J]. Journal of Environmental Management, 2009, 90(1):504-511.
    [27]张明泉,曾正中.水资源评价[M].兰州:兰州大学出版社, 1995.
    [28]林炳营.环境地球化学简明原理[M].北京:冶金工业出版社, 1990.
    [29]潘茂华,朱志良.自然环境中砷的迁移转化研究进展[J].化学通报, 2013, 76(5):399-404.
    [30]田伟君,郝芳华,翟金波.弹性填料净化受污染入湖河流的现场实验研究[J].环境科学, 2008, 29(5):1308-1312.
    [31] BAUMGARTNER L K, REID R P, DUPRAZ C, et al. Sulfate reducing bacteria in microbial mats:Changing paradigms, new discoveries[J]. Sedimentary Geology, 2015, 185(3):131-145.
    [32] ESPA?A JS,PAMO E L,SANTOFIMIA E,etal.Acid mine drainage in the Iberian Pyrite Belt(Odiel river watershed,Huelva,SW Spain):Geochemistry, mineralogy and environmental implications[J]. Applied Geochemistry, 2005, 20(7):1320-1356.
    [33]周跃飞,谢越,周立祥.酸性矿山废水天然中和形成的富铁沉淀及其环境属性[J].环境科学, 2010, 31(6):1581-1588.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700