不同等离子体激励强度下气膜冷却特性的大涡模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Large Eddy Simulation of Film Cooling Flow Characteristics under Different Plasma Actuation Strengths
  • 作者:李国占 ; 陈浮 ; 李林熹 ; 宋彦萍
  • 英文作者:LI Guo-zhan;CHEN Fu;LI Lin-xi;SONG Yan-ping;School of Energy Science and Engineering,Harbin Institute of Technology;
  • 关键词:大涡模拟 ; 气膜冷却 ; 等离子体激励 ; 平板 ; 肾形涡对
  • 英文关键词:Large eddy simulation;;Film cooling;;Plasma actuation;;Flat plate;;Kidney shaped vortex
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:哈尔滨工业大学能源科学与工程学院;
  • 出版日期:2016-12-19 14:41
  • 出版单位:推进技术
  • 年:2017
  • 期:v.38;No.235
  • 语种:中文;
  • 页:TJJS201701020
  • 页数:7
  • CN:01
  • ISSN:11-1813/V
  • 分类号:147-153
摘要
为进一步改善燃气轮机叶片气膜冷却效果,采用大涡模拟(LES)方法对不同等离子体激励强度情况下的平板气膜冷却流场进行了数值模拟研究。结果表明:与无等离子体激励时相比,等离子体激励强度逐渐增至10时射流出口最大流向与法向速度分别增大了16%和7%左右,并移向气膜孔的尾缘,而气膜孔前缘附近的法向速度约减小了4%,从而减少了射流迎风面上冷、热气流的掺混;等离子体对气膜孔下游回流区的动量注入效应使得回流区内的流向速度增大,抑制了横流绕流分离旋涡的发展;等离子体气动激励削弱了肾形涡对的强度及其抬升冷却射流的能力,从而提高了气膜冷却效率,中心线气膜冷却效率随激励强度的增大而升高,当激励强度为10时中心线气膜冷却效率最大提高了55%。
        In order to improve the film cooling efficiency of the gas turbine blade,effects of the strengths of the plasma actuation on the flat plate film cooling flow characteristics were conducted using large eddy simulation(LES). Results show that compared with the non-plasma actuation case,as the plasma actuation strength grows larger,the maximum jet exit streamwise and vertical velocities increase 16% and 7%,respectively,and shift to the trailing edge,but the vertical velocity near the leading edge decreases 4%,thus the mixing process between the jet and the crossflow at the upwind side of the jet is suppressed. Meanwhile,due to the momentum injection effect of the plasma actuation,the streamwise velocity in the reverse flow region is enhanced and the size of the crossflow separation vortex pair downstream of the cooling hole is reduced. Furthermore,the plasma actuation weakens the strength of the kidney shaped vortex and prevents the jet from lifting off the wall. Therefore, the centerline film cooling efficiency rises with increasing the plasma actuation strength, and it is improved by 55% at most when the plasma actuation strength is 10.
引文
[1]Goldstein R J,Eckert E R G,Burggraf F.Effects of Hole Geometry and Density on Three-Dimensional Film Cooling[J].International Journal of Heat and Mass Transfer,1974,17(5):595-607.
    [2]Renze P,Schroder W,Meinke M.Hole Shape Comparison for Film Cooling Flows Using Large-Eddy Simulations[R].AIAA 2007-927.
    [3]姜伟,谢诞梅,高尚,等.倾角孔对叶片前缘冷却效率影响的数值研究[J].推进技术,2015,36(7):1062-1068.(JIANG Wei,XIE Dan-mei,GAO Shang,et al.Numerical Study of Influence of Inclined Hole on Film-Cooling Effectiveness at Leading Edge of a Turbine Blade[J].Journal of Propulsion Technology,2015,36(7):1062-1068.)
    [4]李广超,朱惠人,白江涛,等.气膜孔布局对前缘气膜冷却效率影响的实验[J].推进技术,2008,29(2):153-157.(LI Guang-chao,ZHU Hui-ren,BAI Jiangtao,et al.Experimental Investigation of Film Cooling Effectiveness on Leading Edge with Various Geometries[J].Journal of Propulsion Technology,2008,29(2):153-157.)
    [5]李永康,张靖周,姚玉.利用三角形突片改善气膜冷却效率的数值研究[J].航空动力学报,2006,21(1):83-87.
    [6]戴萍,林枫.横向槽结构对气膜冷却效果影响的数值研究[J].推进技术,2011,32(2):253-260.(DAI Ping,LIN Feng.Numerical Investigation on the Influence of Transverse Slot Configurations on Film Cooling Effect[J].Journal of Propulsion Technology,2011,32(2):253-260.)
    [7]Kusterer K,Bohn D,Sugimoto T,et al.Double-Jet Ejection of Cooling Air for Improved Film-Cooling[J].Journal of Turbomachinery,2007,129(4):809-815.
    [8]Heidmann J D,Ekkad S.A Novel Anti-Vortex Turbine Film Cooling Hole Concept[R].ASME GT 2007-27528.
    [9]Guo X,Schroder W,Meinke M.Large-Eddy Simulations of Film Cooling Flows[J].Computers and Fluids,2006,35(6):587-606.
    [10]Pedersen D R,Eckert E R G,Goldstein R J.Film Cooling with Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the HeatMass Transfer Analogy[J].Journal of Heat Transfer,1977,99(4):620-627.
    [11]Bons J P,Macarthur C D,Rivir R B.The Effect of High Free-Stream Turbulence on Film Cooling Effectiveness[J].Journal of Turbomachinery,1996,118(4):814-825.
    [12]何立明,苏建勇,白晓峰,等.等离子体气动激励改善气膜冷却效率的数值研究[J].空军工程大学学报,2008,9(3):1-5.
    [13]Roy S,Wang C C.Plasma Actuated Heat Transfer[J].Journal of Applied Physics,2008,92(23):231501-1-231503.
    [14]Roy S,Wang C C.Numerical Investigation of Three-Dimensional Plasma Actuation[J].Journal of Thermophysics and Heat Transfer,2013,27(3):489-497.
    [15]代胜吉,何立明,丁未,等.马蹄形等离子体激励器强化气膜冷却效率机理[J].2013,28(9):1982-1987.
    [16]Yu Jinlu,He Liming,Zhu Yifei,et al.Numerical Simulation of the Effect of Plasma Aerodynamic Actuation on Improving Film Hole Cooling Performance[J].International Journal of Heat and Mass Transfer,2013,49(6):897-906.
    [17]Shyy W,Jayaraman B,Andersson A.Modeling of Glow Discharge-Induced Fluid Dynamics[J].Journal of Applied Physics,2002,92(11):6434-6443.
    [18]Mikhail L S,Philippe R S,Mikhail K S,et al.A Hybrid RANS-LES Approach with Delayed-DES and Wall-Modelled LES Capabilities[J].International Journal of Heat and Fluid Flow,2008,29(6):1638-1649.
    [19]Kohli A,Bogard D G.Adiabatic Effectiveness,Thermal Fields,and Velocity Fields for Film Cooling with Large Angle Injection[J].Journal of Turbomachinery,1997,119:352-358.
    [20]Sakai E,Takahashi T,Watanabe H.Large-Eddy Simulation of an Inclined Round Jet Issuing into a Crossflow[J].International Journal of Heat and Mass Transfer,2014,69:300-311.
    [21]Gaitonde D V,Visbal M R,Roy S.A Coupled Approach for Plasma-Based Flow Control Simulations of Wing Sections[R].AIAA 2006-1205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700