脑神经活动光学显微成像技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:In vivo optical imaging of brain activity
  • 作者:莫驰 ; 陈诗源 ; 翟慕岳 ; 吴润龙 ; 王子晨 ; 喻菁 ; 王爱民 ; 陈良怡 ; 程和平
  • 英文作者:Chi Mo;Shiyuan Chen;Muyue Zhai;Runlong Wu;Zichen Wang;Jing Yu;Aimin Wang;Liangyi Chen;Heping Cheng;Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University;State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University;School of Electronics Engineering and Computer Science, Peking University;
  • 关键词:脑科学 ; 多光子荧光 ; 超分辨 ; 光片照明 ; 光声成像 ; 微型化 ; 荧光探针 ; 红外Ⅱ区
  • 英文关键词:brain science;;multi-photon fluorescence microscopy;;super-resolution microscopy;;light-sheet illumination;;photoacoustic imaging;;miniaturized microscopy;;fluorescence probes;;near-infrared Ⅱ
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:北京大学前沿交叉学科研究院,北京大学-清华大学生命科学联合中心;北京大学分子医学研究所,膜生物学国家重点实验室;北京大学信息科学技术学院;
  • 出版日期:2018-12-30
  • 出版单位:科学通报
  • 年:2018
  • 期:v.63
  • 语种:中文;
  • 页:KXTB201836017
  • 页数:16
  • CN:36
  • ISSN:11-1784/N
  • 分类号:98-113
摘要
大脑包含数亿至数千亿的神经元以及更为复杂的神经突触连接网络,是生物体中最复杂的器官.脑科学是21世纪以来最重要的前沿新兴学科之一,它的兴起标志着人类在认识自我、探索智慧和意识的本质中进入了一个新时代.在活体中对大脑神经活动进行长时间、大视野、高时空分辨率的观测,是解析大脑功能的关键.光学显微成像技术以其时空分辨率高,光学探针的特异性和多样性等优势,成为了脑神经活动研究的重要工具.针对大脑的高度散射、高速神经信号传递、超大神经元规模、精细突触连接结构等特性以及自由活动动物的脑神经活动观测需求,本文将从超深、超快、大视场、超分辨、微型化5个发展方向,概述包括多光子、红外二区、光声、光片、结构光以及自适应光学在内的多种光学显微成像技术在脑神经活动显微观测领域的发展进展及前沿动态,并展望脑神经活动光学显微成像技术的未来发展方向与前景.
        In the new millennium, the brain and neuroscience have taken center-stage in international collaborative efforts. The brain comprises billions of neurons interconnected at trillions of synapses. To decipher its structure and function is one of the boldest projects ever pursued by the scientific community. The development of better imaging technology once again affords powerful tools to meet this grand challenge. Different imaging modalities have been widely used in revealing the complex structural organization and functional dynamics of the brain, including X-ray computed tomography, magnetic resonance imaging, positron emission computed tomography, ultrasound imaging, electron microscopy, and fluorescence microscopy. Among these, only fluorescence microscopy provides high contrast, high specificity, and high spatiotemporal resolution imaging in vivo. Thanks to the recent progress in photonics, laser physics, computer and information science, and nanomaterial science, the century-old optical imaging field is now being revitalizing and is booming. Recent developments in three-photon microscopy enable the optical resolution of single-neuron activity as deep as 2 mm beneath the surface of the cortex, and non-invasively visualization of single-neuron activity through the intact opaque skull. The emergence of photon-efficient super-resolution Hessian structured illumination microscopy allows live cells to be imaged with a spatial resolution <90 nm and an acquisition rate of 564 frames per second, and enables time-lapse super-resolution imaging for over an hour with minimal photo-bleaching. Light-sheet microscopy, on the other hand, is capable of imaging ~100000 neurons in the entire zebrafish brain, at a volumetric imaging rate >10 Hz. Other innovations such as near-infrared II imaging, photoacoustic tomography, and adaptive optics are also extending the spatial and temporal resolution, imaging depth, and trans-scale volumetric imaging capacity. Another paradigm-shift is to record brain activity in freely-moving and behaving animals, which involves technological innovation in miniaturized microscopy with high spatiotemporal resolution. In this regard, we recently developed a fast, high-resolution, miniaturized two-photon microscope(FHIRM-TPM), with a headpiece weighing only 2.2 g and occupying less than 1 cm~3, equipped with a GRIN lens of NA 0.8. Because the fluorescent Ca~(2+) indicators GFP and GCaMP6 are commonly used in biomedical science, we designed and custom-manufactured a hollow-core photonic crystal fiber to deliver 920-nm femtosecond laser pulses with little dispersion and attenuation. FHIRM-TPM is capable of long-term recording neuronal activity in freely-behaving mice at single-spine and sub-millisecond spatiotemporal resolution(0.64 μm laterally and 3.35 μm axially, 40 Hz at 256 pixel×256 pixel for raster scanning and 10000 Hz for free-line scanning). Future applications of this technology in many behavioral paradigms will help to address many fundamental questions such as spatial and temporal information-processing, learning and memory, decision-making, and social interactions. In summary, with the emphasis on developing more advanced imaging technologies, scientists can directly visualize neuronal activity deeper in the brain, markedly faster with super-resolution, and over many orders of spatiotemporal scales. With technical advances unfolding in multiple fronts(e.g., probes, detectors, modality fusion, and deep-learning assisted imaging), systematic breakthroughs will provide brain scientists and neuroscientists with the ability to gain a holistic view of multi-layered brain activity at the levels of neuron clusters, nuclei, and the circuitry of long-range connectivity. Finally, we envision that high-resolution imaging methods enabling in toto recording of brain activity at single-neuron resolution in small mammals may become a reality within the next decade.
引文
1 Fischl B,Dale A M.Measuring the thickness of the human cerebral cortex from magnetic resonance images.Proc Natl Acad Sci USA,2000,97:11050-11055
    2 Jacques S L.Optical properties of biological tissues:A review.Phys Med Biol,2013,58:R37-R61
    3 Wang L V,Wu H.Biomedical Optics:Principles and Imaging.Hoboken:Wiley-Interscience,2007
    4 Hong G,Antaris A L,Dai H.Near-infrared fluorophores for biomedical imaging.Nat Biomed Eng,2017,1:10
    5 Wang L V.Multiscale photoacoustic microscopy and computed tomography.Nat Photon,2009,3:503-509
    6 Denk W,Strickler J H,Webb W W.Two-photon laser scanning fluorescence microscopy.Science,1990,248:73-76
    7 Zipfel W R,Williams R M,Webb W W.Nonlinear magic:Multiphoton microscopy in the biosciences.Nat Biotechnol,2003,21:1369-1377
    8 Helmchen F,Denk W.Deep tissue two-photon microscopy.Nat Methods,2005,2:932-940
    9 Theer P,Hasan M T,Denk W.Two-photon imaging to a depth of 1000μm in living brains by use of a Ti:Al2O3 regenerative amplifier.Opt Lett,2003,28:1022-1024
    10 Miller D R,Hassan A M,Jarrett J W,et al.In vivo multiphoton imaging of a diverse array of fluorophores to investigate deep neurovascular structure.Biomed Opt Express,2017,8:3470-3481
    11 Horton N G,Wang K,Kobat D,et al.In vivo three-photon microscopy of subcortical structures within an intact mouse brain.Nature Photon,2013,7:205-209
    12 Zhong Y,Ma Z,Zhu S,et al.Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500nm.Nat Commun,2017,8:737
    13 Yang J,Gong L,Xu X,et al.Motionless volumetric photoacoustic microscopy with spatially invariant resolution.Nat Commun,2017,8:780
    14 Ji N,Milkie D E,Betzig E.Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues.Nat Methods,2009,7:141-147
    15 Attardo A,Fitzgerald J E,Schnitzer M J.Impermanence of dendritic spines in live adult CA1 hippocampus.Nature,2015,523:592-596
    16 Wang T,Ouzounov D G,Wu C,et al.Three-photon imaging of mouse brain structure and function through the intact skull.Nat Methods,2018,15:789-792
    17 Hong G,Diao S,Chang J,et al.Through-skull fluorescence imaging of the brain in a new near-infrared window.Nat Photon,2014,8:723-730
    18 Diao S,Blackburn J L,Hong G,et al.Fluorescence imaging in vivo at wavelengths beyond 1500 nm.Angew Chem,2015,127:14971-14975
    19 Diao S,Hong G,Antaris A L,et al.Biological imaging without autofluorescence in the second near-infrared region.Nano Res,2015,8:3027-3034
    20 Wan H,Yue J,Zhu S,et al.A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues.Nat Commun,2018,9:1171
    21 Liu W,Wang Y,Han X,et al.Fluorescence resonance energy transfer(fret)based nanoparticles composed of AIE luminogens and NIRdyes with enhanced three-photon near-infrared emission for in vivo brain angiography.Nanoscale,2018,10:10025-10032
    22 Li D,Ni X,Zhang X,et al.Aggregation-induced emission luminogen-assisted stimulated emission depletion nanoscopy for super-resolution mitochondrial visualization in live cells.Nano Res,2018,11:6023-6033
    23 Antaris A L,Chen H,Cheng K,et al.A small-molecule dye for NIR-II imaging.Nat Mat,2016,15:235-242
    24 Yu D,Gustafson W C,Han C,et al.An improved monomeric infrared fluorescent protein for neuronal and tumour brain imaging.Nat Commun,2014,5:3626
    25 Bell A G.On the production and reproduction of sound by light.Am J Sci,1880,20:305-324
    26 Hoelen C,De Mul F,Pongers R,et al.Three-dimensional photoacoustic imaging of blood vessels in tissue.Opt Lett,1998,23:648-650
    27 Wang L V,Hu S.Photoacoustic tomography:In vivo imaging from organelles to organs.Science,2012,335:1458-1462
    28 Witte R S,Kim K,Agarwal A,et al.Enhanced photoacoustic neuroimaging with gold nanorods and pebbles.SPIE,2008,685614-685619
    29 Wang X,Pang Y,Ku G,et al.Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain.Nat Biotechnol,2003,21:803-806
    30 Yao J,Wang L,Yang J,et al.High-speed label-free functional photoacoustic microscopy of mouse brain in action.Nat Methods,2015,12:407-410
    31 Li L,Zhu L,Ma C,et al.Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution.Nat Biomed Eng,2017,1:0071
    32 Razansky D,Vinegoni C,Ntziachristos V.Multispectral photoacoustic imaging of fluorochromes in small animals.Opt Lett,2007,32:2891-2893
    33 Burton N C,Patel M,Morscher S,et al.Multispectral opto-acoustic tomography(MSOT)of the brain and glioblastoma characterization.Neuroimage,2013,65:522-528
    34 Rao B,Zhang R,Li L,et al.Photoacoustic imaging of voltage responses beyond the optical diffusion limit.Sci Rep,2017,7:2560
    35 Zhang H K,Yan P,Kang J,et al.Listening to membrane potential:Photoacoustic voltage-sensitive dye recording.J Biomed Opt,2017,22:045006
    36 Deán-Ben X L,Sela G,Lauri A,et al.Functional optoacoustic neuro-tomography for scalable whole-brain monitoring of calcium indicators.Light Sci Appl,2016,5:e16201
    37 Gottschalk S,Dean-Ben X L,Shoham S,et al.Non-invasive in vivo functional optoacoustic calcium imaging of neural activity in GCaMP6f-expressing mice.In:Optics and the Brain.San Diego:Optical Society of America,2017.BrTu3B.3
    38 Kang J,Zhang H K,Kadam S D,et al.Transcranial in vivo recording of neural activity in the rodent brain with near-infrared photoacoustic voltage-sensitive dye imaging.BioRxiv,2018,202408
    39 Mao H,Tao L,Chen L Y.Application and development of adaptive optics to three-dimensional in vivo deep tissue fluorescent microscopy(in Chinese).Infrared Laser Eng,2016,45:602001[毛珩,Tao L,陈良怡.自适应光学技术在深层动态荧光显微成像中的应用和发展.红外与激光工程,2016,45:602001]
    40 Booth M J.Adaptive optical microscopy:The ongoing quest for a perfect image.Light Sci Appl,2014,3:e165
    41 Wang K,Milkie D E,Saxena A,et al.Rapid adaptive optical recovery of optimal resolution over large volumes.Nat Methods,2014,11:625-628
    42 Wang K,Sun W,Richie C T,et al.Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue.Nat Commun,2015,6:7276
    43 Xu X,Liu H,Wang L V.Time-reversed ultrasonically encoded optical focusing into scattering media.Nat Photon,2011,5:154-157
    44 Tang J,Germain R N,Cui M.Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique.Proc Nat Acad Sci USA,2012,109:8434-8439
    45 Andermann M L,Gilfoy N B,Goldey G J,et al.Chronic cellular imaging of entire cortical columns in awake mice using microprisms.Neuron,2013,80:900-913
    46 Low R J,Gu Y,Tank D W.Cellular resolution optical access to brain regions in fissures:Imaging medial prefrontal cortex and grid cells in entorhinal cortex.Proc Natl Acad Sci USA,2014,111:18739-18744
    47 Bocarsly M E,Jiang W,Wang C,et al.Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain.Biomed Opt Express,2015,6:4546-4556
    48 Murayama M,Larkum M E.In vivo dendritic calcium imaging with a fiberoptic periscope system.Nat Protoc,2009,4:1551-1559
    49 Chung K,Wallace J,Kim S,et al.Structural and molecular interrogation of intact biological systems.Nature,2013,497:332-337
    50 Yang B,Treweek J B,Kulkarni R P,et al.Single-cell phenotyping within transparent intact tissue through whole-body clearing.Cell,2014,158:945-958
    51 Zhang C,Feng W,Zhao Y,et al.A large,switchable optical clearing skull window for cerebrovascular imaging.Theranostics,2018,8:2696-2708
    52 Hochbaum D R,Zhao Y,Farhi S L,et al.All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins.Nat Methods,2014,11:825-833
    53 Gong Y,Huang C,Li J Z,et al.High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor.Science,2015,350:1361-1366
    54 Kulkarni R U,Kramer D J,Pourmandi N,et al.Voltage-sensitive rhodol with enhanced two-photon brightness.Proc Natl Acad Sci USA,2017,114:2813-2818
    55 Chamberland S,Yang H H,Pan M M,et al.Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators.eLife,2017,6:e25690
    56 Grewe B F,Voigt F F,van T Hoff M,et al.Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens.Biomed Opt Express,2011,2:2035-2046
    57 Kong L,Tang J,Little J P,et al.Continuous volumetric imaging via an optical phase-locked ultrasound lens.Nat Methods,2015,12:759-762
    58 Nadella K N S,Ro?H,Baragli C,et al.Random-access scanning microscopy for 3d imaging in awake behaving animals.Nat Methods,2016,13:1001-1004
    59 Yang W,Yuste R.In vivo imaging of neural activity.Nat Methods,2017,14:349-359
    60 Lu R,Sun W,Liang Y,et al.Video-rate volumetric functional imaging of the brain at synaptic resolution.Nat Neurosci,2017,20:620-628
    61 Ahrens M B,Orger M B,Robson D N,et al.Whole-brain functional imaging at cellular resolution using light-sheet microscopy.Nat Methods,2013,10:413-420
    62 Zong W,Zhao J,Chen X,et al.Large-field high-resolution two-photon digital scanned light-sheet microscopy.Cell Res,2015,25:254-257
    63 Thériault G,De Koninck Y,Mccarthy N.Extended depth of field microscopy for rapid volumetric two-photon imaging.Opt Express,2013,21:10095-10104
    64 Thériault G,Cottet M,Castonguay A,et al.Extended two-photon microscopy in live samples with bessel beams:Steadier focus,faster volume scans,and simpler stereoscopic imaging.Front Cell Neurosci,2014,8:00139
    65 Yang Y,Yao B,Lei M,et al.Two-photon laser scanning stereomicroscopy for fast volumetric imaging.PLoS One,2016,11:e168885
    66 Chen B,Huang X,Gou D,et al.Rapid volumetric imaging with bessel-beam three-photon microscopy.Biomed Opt Express,2018,9:1992-2000
    67 Yang W,Yuste R.Holographic imaging and photostimulation of neural activity.Curr Opin Neurobiol,2018,50:211-221
    68 Nikolenko V,Watson B O,Araya R,et al.SLM microscopy:Scanless two-photon imaging and photostimulation using spatial light modulators.Front Neural Circuit,2008,2:5
    69 Yang W,Miller J K,Carrillo-Reid L,et al.Simultaneous multi-plane imaging of neural circuits.Neuron,2016,89:269-284
    70 Fox M D,Raichle M E.Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging.Nat Rev Neurosci,2007,8:700-711
    71 Reardon S.A giant neuron found wrapped around entire mouse brain.Nat News,2017,543:14
    72 Stirman J N,Smith I T,Kudenov M W,et al.Wide field-of-view,multi-region,two-photon imaging of neuronal activity in the mammalian brain.Nat Biotechnol,2016,34:857-862
    73 Tsai P S,Mateo C,Field J J,et al.Ultra-large field-of-view two-photon microscopy.Opt Express,2015,23:13833-13847
    74 Pacheco S,Wang C,Chawla M K,et al.High resolution,high speed,long working distance,large field of view confocal fluorescence microscope.Sci Rep,2017,7:13349
    75 Mcconnell G,Tr?g?rdh J,Amor R,et al.A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout.eLife,2016,5:e18659
    76 Chhetri R K,Keller P J.Microscopy:Imaging far and wide.eLife,2016,5:e21072
    77 Bourne J N,Harris K M.Balancing structure and function at hippocampal dendritic spines.Annu Rev Neurosci,2008,31:47-67
    78 Engert F,Bonhoeffer T.Dendritic spine changes associated with hippocampal long-term synaptic plasticity.Nature,1999,399:66-70
    79 Shi S,Hayashi Y,Petralia R S,et al.Rapid spine delivery and redistribution of AMPA receptors after synaptic nmda receptor activation.Science,1999,284:1811-1816
    80 Carroll R C,Lissin D V,von Zastrow M,et al.Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures.Nat Neurosci,1999,2:454-460
    81 Honkura N,Matsuzaki M,Noguchi J,et al.The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines.Neuron,2008,57:719-729
    82 Hotulainen P,Hoogenraad C C.Actin in dendritic spines:Connecting dynamics to function.J Cell Biol,2010,189:619-629
    83 Betzig E,Patterson G H,Sougrat R,et al.Imaging intracellular fluorescent proteins at nanometer resolution.Science,2006,313:1642-1645
    84 Rust M J,Bates M,Zhuang X.Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy(STORM).Nat Methods,2006,3:793-796
    85 Hess S T,Girirajan T P,Mason M D.Ultra-high resolution imaging by fluorescence photoactivation localization microscopy.Biophys J,2006,91:4258-4272
    86 Hell S W,Wichmann J.Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy.Opt Lett,1994,19:780-782
    87 Gustafsson M G.Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy.J Microsc,2000,198:82-87
    88 Xu K,Babcock H P,Zhuang X.Dual-objective storm reveals three-dimensional filament organization in the actin cytoskeleton.Nat Methods,2012,9:185-188
    89 Dani A,Huang B,Bergan J,et al.Superresolution imaging of chemical synapses in the brain.Neuron,2010,68:843-856
    90 Xu K,Zhong G,Zhuang X.Actin,spectrin,and associated proteins form a periodic cytoskeletal structure in axons.Science,2013,339:452-456
    91 N?gerl U V,Willig K I,Hein B,et al.Live-cell imaging of dendritic spines by STED microscopy.Proc Natl Acad Sci USA,2008,105:18982-18987
    92 Berning S,Willig K I,Steffens H,et al.Nanoscopy in a living mouse brain.Science,2012,335:551-551
    93 Yu W,Ji Z,Dong D,et al.Super-resolution deep imaging with hollow Bessel beam STED microscopy.Laser Photon Rev,2016,10:147-152
    94 Ding J B,Takasaki K T,Sabatini B L.Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy.Neuron,2009,63:429-437
    95 Bethge P,Chéreau R,Avignone E,et al.Two-photon excitation STED microscopy in two colors in acute brain slices.Biophys J,2013,104:778-785
    96 Gustafsson M G.Nonlinear structured-illumination microscopy:Wide-field fluorescence imaging with theoretically unlimited resolution.Proc Natl Acad Sci USA,2005,102:13081-13086
    97 Sawada K,Kawakami R,Shigemoto R,et al.Super-resolution structural analysis of dendritic spines using three-dimensional structured illumination microscopy in cleared mouse brain slices.Eur J Neurosci,2018,47:1033-1042
    98 Urban B E,Xiao L,Dong B,et al.Imaging neuronal structure dynamics using 2-photon super-resolution patterned excitation reconstruction microscopy.J Biophoton,2018,11:e201700171
    99 Huang X,Fan J,Li L,et al.Fast,long-term,super-resolution imaging with hessian structured illumination microscopy.Nat Biotechnol,2018,36:451-459
    100 Wu Y,Shroff H.Faster,sharper,and deeper:Structured illumination microscopy for biological imaging.Nat Methods,2018,15:1011-1019
    101 Kerr J N,Nimmerjahn A.Functional imaging in freely moving animals.Curr Opin Neurobiol,2012,22:45-53
    102 Flusberg B A,Nimmerjahn A,Cocker E D,et al.High-speed,miniaturized fluorescence microscopy in freely moving mice.Nat Methods,2008,5:935-938
    103 Helmchen F,Fee M S,Tank D W,et al.A miniature head-mounted two-photon microscope:High-resolution brain imaging in freely moving animals.Neuron,2001,31:903-912
    104 Engelbrecht C J,Johnston R S,Seibel E J,et al.Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo.Opt Express,2008,16:5556-5564
    105 Piyawattanametha W,Cocker E D,Burns L D,et al.In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror.Opt Lett,2009,34:2309-2311
    106 Sawinski J,Wallace D J,Greenberg D S,et al.Visually evoked activity in cortical cells imaged in freely moving animals.Proc Natl Acad Sci USA,2009,106:19557-19562
    107 Zong W,Wu R,Li M,et al.Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice.Nat Methods,2017,14:713-719
    108 T?pperwien M,van der Meer F,Stadelmann C,et al.Three-dimensional virtual histology of human cerebellum by X-ray phase-contrast tomography.Proc Natl Acad Sci USA,2018,115:6940-6945
    109 Christiansen E M,Yang S J,Ando D M,et al.In silico labeling:Predicting fluorescent labels in unlabeled images.Cell,2018,173:792-803
    110 Waller L,Tian L.Computational imaging:Machine learning for 3D microscopy.Nature,2015,523:416-417

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700