金属橡胶支座力学性能试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experiment on mechanical properties of mental rubber bearing
  • 作者:夏修身 ; 张颖周 ; 陈兴冲 ; 李建中 ; 唐径遥
  • 英文作者:XIA Xiu-shen;ZHANG Ying-zhou;CHEN Xing-chong;LI Jian-zhong;TANG Jing-yao;School of Civil Engineering, Lanzhou Jiaotong University;Key Laboratory of Highway Network Monitoring in Gansu Province, Gansu Hengda Road and Bridge Group Co., Ltd.;School of Civil Engineering, Tongji University;
  • 关键词:桥梁工程 ; 桥梁支座 ; 金属橡胶 ; 力学性能试验 ; 地震反应
  • 英文关键词:bridge engineering;;bridge bearing;;metal rubber;;mechanical property experiment;;seismic response
  • 中文刊名:XAGL
  • 英文刊名:Journal of Chang'an University(Natural Science Edition)
  • 机构:兰州交通大学土木工程学院;甘肃恒达路桥工程集团有限公司甘肃省公路路网监测重点实验室;同济大学土木工程学院;
  • 出版日期:2019-07-15
  • 出版单位:长安大学学报(自然科学版)
  • 年:2019
  • 期:v.39;No.192
  • 基金:国家自然科学基金项目(51368033,51668035);; 中国国家铁路集团有限公司基金项目(2015G002-B)
  • 语种:中文;
  • 页:XAGL201904012
  • 页数:8
  • CN:04
  • ISSN:61-1393/N
  • 分类号:96-103
摘要
为测试金属橡胶支座的力学性能是否满足桥梁支座使用要求,分别通过压缩试验、转动试验和振动台试验对金属橡胶支座的力学性能展开研究。通过压缩试验获得不同荷载下支座的竖向力-位移关系曲线,基于MATLAB平台对支座应力-应变关系曲线拟合后求导,得到支座的切线模量,构造出切线模量的数学表达式,并以此为基础推导出支座竖向刚度-竖向力的计算公式;考虑支座竖向应力,对金属橡胶支座进行转动性能试验,获得支座的转动力矩-转角关系曲线;对采用金属橡胶支座的桥梁模型进行振动台试验,得到模型各主要测点的位移和加速度,并与采用尺寸接近的板式橡胶支座桥梁模型振动台试验结果进行比较。研究结果表明:金属橡胶支座竖向力-位移关系曲线具有明显的非线性特征,金属橡胶支座的竖向承载力可以满足中小跨径公路桥梁支座的使用要求;支座的切线模量与应力为近似线性函数关系,以此为基础推导出支座刚度公式计算结果与试验结果吻合较好,提出的刚度计算公式在金属橡胶支座的初步设计时可以用来确定支座关键技术参数;转动刚度与其设计应力成线性关系,在支座设计及桥梁设计计算时需考虑竖向应力对支座转动刚度的影响;金属橡胶支座具有良好的减、隔震性能。
        To test the mechanical properties of metal rubber bearings and assess whether they meet the requirements of bridge bearings, a compression experiment, rotation experiment, and a shaking table test were studied. The vertical force and displacement curve of the bearings was obtained through the compression experiment under different loads. The relationship between the tangent modulus was obtained by fitting and deriving the stress and strain curve using the MATLAB platform. The mathematical expression of the tangent modulus was constructed,and based on this, the computational formula of the bearings for the vertical stiffness and force was deduced. Considering the bearing vertical stress, metal rubber bearing rotational experiments were performed to obtain the rotational moment and angle curve of the bearings. Shaking table tests were conducted on the bridge models with metal rubber bearings, the displacement and acceleration of each important point were obtained, and the results were compared to those of laminated rubber bearings, whose dimensions were similar to those of the metal rubber bearings. The results show that the vertical force and displacement relationship curve of the metal rubber bearings have obvious nonlinear characteristics. The vertical capacity of the metal rubber bearings can meet the service requirements of small-span and medium-span highway bridge bearings. The tangent modulus of the bearing is an approximately linear function related to stress and the calculation formula of the vertical stiffness agrees well with the experimental results. The stiffness calculation formula can be used to determine the key technical parameters of the metal rubber bearings in the initial design. The rotational stiffness of the bearings is linear with its design stress, The influence of vertical stress on the rotational stiffness of the bearing should be considered in the design and calculation of bearing and bridge. Metal rubber bearings have good damping and vibration isolation performance. 3 tabs, 15 figs, 25 refs.
引文
[1] 汤虎,李建中,邵长宇.中小跨径板式橡胶支座梁桥横向抗震性能[J].中国公路学报,2016,29(3):55-65.TANG Hu,LI Jian-zhong,SHAO Chang-yu.Seismic performance of small and medium span girder bridges with plate type elastomeric pad bearings in the transverse direction[J].China Journal of Highway and Transport,2016,29(3):55-65.
    [2] 庄军生.桥梁支座[M].4版.北京:中国铁道出版社,2015.ZHUANG Jun-sheng.Bridge bearing[M].4th ed.Beijing:China Railway Publishing House,2015.
    [3] 张颖周,夏修身,韦性涵.梁式桥板式橡胶支座的合理计算模型研究[J].世界桥梁,2017,45(4):56-60.ZHANG Ying-zhou,XIA Xiu-shen,WEI Xing-han.Study of rational calculation model for beam bridge with laminated bearings[J].World Bridges,2017,45(4):56-60.
    [4] 李建中,汤虎,管仲国.中小跨径板式橡胶支座梁桥新型隔震系统[J].中国公路学报,2015,28(3):35-43.LI Jian-zhong,TANG Hu,GUAN Zhong-guo.A new isolation system for small and medium span bridges on laminated rubber bearings[J].China Journal of Highway and Transport,2015,28(3):35-43.
    [5] 李建中,汤虎.中小跨径板式橡胶支座梁桥横向抗震设计研究[J].土木工程学报,2016,49(11):69-78.LI Jian-zhong,TANG Hu.Study on transverse seismic design of small and medium span bridges with elastomeric bearing pads[J].China Civil Engineering Journal,2016,49(11):69-78.
    [6] 李冲,王克海,惠迎新,等.考虑摩擦滑移的板式橡胶支座连续梁桥地震反应分析[J].中国公路学报,2016,29(3):73-81.LI Chong,WANG Ke-hai,HUI Ying-xin,et al.Seismic response of continuous girder bridge with laminated rubber bearing considering friction sliding[J].China Journal of Highway and Transport,2016,29(3):73-81.
    [7] 吴刚,王克海,李冲,等.板式橡胶支座摩擦滑移特性参数分析[J].土木工程学报,2014,47(增1):108-112.WU Gang,WANG Ke-hai,LI Chong,et al.Parametric finite element investigation of laminated rubber bearings with friction slipping[J].China Civil Engineering Journal,2014,47(S1):108-112.
    [8] 石岩,王东升,陈宝魁,等.时效及环境因素对隔震连续梁桥地震反应的影响[J].应用基础与工程科学学报,2016,24(4):827-839.SHI Yan,WANG Dong-sheng,CHEN Bao-kui,et al.Effects of aging and environmental conditions on seismic response of continuous beam bridges with seismic isolation[J].Journal of Basic Science and Engineering,2016,24(4):827-839.
    [9] 周明华,葛宝翔.公路桥梁橡胶支座的使用寿命与应用对策[J].土木工程学报,2005,38(6):92-96.ZHOU Ming-hua,GE Bao-xiang.On the service life of rubber bearing and countermeasures of application for highway bridges[J].China Civil Engineering Journal,2005,38(6):92-96.
    [10] 张大义,夏颖,张启成,等.金属橡胶力学性能研究进展与展望[J].航空动力学报,2018,33(6):1432-1445.ZHANG Da-yi,XIA Ying,ZHANG Qi-cheng,et al.Researchs on mental rubber mechanics properties in retrospect and prospect[J].Journal of Aerospace Power,2018,33(6):1432-1445.
    [11] 白鸿柏,路纯红,曹凤利.金属橡胶材料及工程应用[M].北京:科学出版社,2014.BAI Hong-bai,LU Chun-hong,CAO Feng-li.Metal rubber materials and engineering applications[M].Beijing:Science Press,2014.
    [12] SHINOHARA T,YOSHIDA K.Deformation analysis of surface flaws in stainless steel wire drawing[J].Journal of Materials Processing Technology,2005,162:579-584.
    [13] TAM C K W,PASTOUCHENKO N N,SCHLINKER R H.Noise source distribution in supersonic jets[J].Journal of Sound and Vibration,2006,291(1/2):192-201.
    [14] GERARD A,BERRY A,MASSON P.Control of tonal noise from subsonic axial fan.Part 2:Active control simulations and experiments in free field[J].Journal of Sound and Vibration,2005,288(4/5):1077-1104.
    [15] 闫辉,姜洪源,赵宏宇,等.金属橡胶材料温度特性分析[J].稀有金属材料与工程,2011,40(12):2092-2095.YAN Hui,JIANG Hong-yuan,ZHAO Hong-yu,et al.Temperature characteristics of metal rubber material[J].Rare Metal Materials and Engineering,2011,40(12):2092-2095.
    [16] ZHANG D,SCARPA F,MA Y,et al.Compression mechanics of nickel-based superalloy metal rubber[J].Materials Science and Engineering,2013,580:305-312.
    [17] ZHANG D,SCARPA F,MA Y,et al.Dynamic mechanical behavior of nickel-based superalloy metal rubber[J].Materials & Design,2014,56:69-77.
    [18] MA Y,ZHANG Q,ZHANG D,et al.The mechanics of shape memory alloy metal rubber[J].Acta Materialia,2015,96:89-100.
    [19] 曹凤利,白鸿柏,任国全,等.金属橡胶恢复力的迟滞模型研究[J].中国机械工程,2014,25(3):311-314,320.CAO Feng-li,BAI Hong-bai,REN Guo-quan,et al.Research on hysteresis model of restoring force of metal rubber[J].China Mechanical Engineering,2014,25(3):311-314,320.
    [20] FENGLI C,HONGBAI B,DONGWEI L,et al.A constitutive model of metal rubber for hysteresis characteristics based on a meso-mechanical method[J].Rare Metal Materials and Engineering,2016,45(1):1-6.
    [21] 高笛,马艳红,洪杰.压缩比对金属橡胶结构和压缩力学性能影响[J].航空动力报,2016,31(3):575-580.GAO Di,MA Yan-hong,HONG Jie.Influence of compression ration on microstructure and mechanical behavior of metal rubber[J].Journal of Aerospace Power,2016,31(3):575-580.
    [22] 卢成壮,李静媛,周邦阳,等.金属橡胶的刚度特性和阻尼试验研究[J].振动与冲击,2017,36(8):203-208.LU Cheng-zhuang,LI Jing-yuan,ZHOU Bang-yang,et al.An experimental study on stiffness characteristics and damping of metal rubber[J].Journal of Vibration and Shock,2017,36(8):203-208.
    [23] 余慧杰,刘文慧,王亚苏.金属橡胶静刚度特性及其力学模型研究[J].中国机械工程,2016,27(23):3167-3171.YU Hui-jie,LIU Wen-hui,WANG Ya-su.Research on stiffness characteristics and mechanics model of metal rubbers[J].China Mechanical Engineering,2016,27(23):3167-3171.
    [24] 江健,周艳国,姚运生,等.不同高宽比金属橡胶隔震支座力学性能分析[J].地震工程与工程振动,2015,35(3):183-190.JINAG Jian,ZHOU Yan-guo,YAO Yun-sheng,et al.An experimental analysis of the mechanical property of metal-rubber isolator with different aspect ratios[J].Earthquake Engineering and Engineering Dynamics,2015,35(3):183-190.
    [25] 李杨海.公路桥梁支座实用手册[M].北京:人民交通出版社,2009.LI Yang-hai.Practical handbook of highway and hridge hearings[M].Beijing:China Communications Press,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700