微弧氧化时间对TA15合金陶瓷膜表面形貌和性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Influence of Micro-arc Oxidation Time on the Surface Morphology and Properties of Ceramic Coating Developed on TA15 Alloy
  • 作者:王先 ; 于思荣 ; 赵严 ; 张鹏 ; 刘恩洋 ; 熊伟
  • 英文作者:WANG Xian;YU Sirong;ZHAO Yan;ZHANG Peng;LIU Enyang;XIONG Wei;College of Materials Science and Engineering, China University of Petroleum;
  • 关键词:TA15钛合金 ; 微弧氧化技术(MAO) ; 氧化时间 ; 表面形貌 ; 耐蚀性
  • 英文关键词:TA15 alloy;;micro-arc oxidation;;oxidation time;;surface topography;;corrosion resistance
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:中国石油大学(华东)材料科学与工程学院;
  • 出版日期:2019-06-20
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:山东省自然科学基金(ZR2017LEM004);; 石油天然气装备教育部重点实验室(西南石油大学)(OGE201702-07);; 中央高校基本科研业务费资助项目(18CX02091A;17CX06051)~~
  • 语种:中文;
  • 页:CLDB201912017
  • 页数:5
  • CN:12
  • ISSN:50-1078/TB
  • 分类号:94-98
摘要
以NaAlO_2、NaF、KOH为电解液对TA15钛合金进行不同时间的微弧氧化处理,在其表面制备一层致密的陶瓷膜,以提高TA15钛合金的表面硬度和耐蚀性。对不同氧化时间下陶瓷膜的表面形貌、成分、物相组成进行表征分析,并对不同氧化时间下陶瓷膜的显微硬度、表面粗糙度及耐蚀性进行对比研究。结果表明,微弧氧化陶瓷膜表面布满细小的蜂窝状微纳米级孔洞,随氧化时间延长,陶瓷膜表面逐渐平整化,时间过长会出现凸起、凹坑等缺陷,导致陶瓷膜粗糙度增大。陶瓷膜所含元素主要为O、Ti、Al等,物相组成主要为金红石型TiO_2、Al_2O_3及Al_2Ti_3相。随氧化时间的延长,陶瓷膜表面显微硬度逐渐增大,50 min时可达332.82HV,比基体提高了59.2%。粗糙度呈先下降后上升的趋势,40 min时陶瓷膜平整光滑,孔洞分布均匀,粗糙度最小(1.420μm),膜厚约10μm。耐蚀性呈先上升后下降趋势,40 min时陶瓷膜的自腐蚀电位为+222.24 mV,比基体提高了约530 mV,腐蚀电流密度为1.73×10~(-9)A/cm~2,降低为基体的3%,耐蚀性最佳。
        Dense ceramic coatings were fabricated on TA15 by micro-arc oxidation for improving its hardness and corrosion resistance with NaAlO_2, NaF and KOH as electrolyte. Surface morphology, chemical composition and phase composition of coatings were analyzed. Microhardness, surface roughness and corrosion resistance of coatings for different oxidation time were investigated. The results show that tiny honeycomb-like micro-nano pores could be seen on coatings. With the increase of oxidation time, the surface of coatings gradually became smooth. When the time was too long, pits, bulges and other defects were appeared. The surface roughness of the coatings firstly decreased and then increased. The coating was composed of TiO_2, Al_2O_3 and Al_2Ti_3 phases. The surface microhardness of the coating always increased with the increase of oxidation time. The microhardness of the 50 min treated coating was 332.82 HV, which increased by 59.2% compared to the matrix. The corrosion potential of the 40 min treated coating was +222.24 mV, which was 530 mV higher than that of the matrix. The corrosion current density of the 40 min treated coating was 1.73×10~(-9 )A/cm~2, which was reduced to 3% of the matrix. The 40 min treated coating exhibited the best corrosion resistance.
引文
1 Ni A,Liu D,Wang S,et al.Journal of Materials Science & Technology,2016,32(10),1071.
    2 Dai S J,Zhu Y T,Chen F.Journal of Chongqing University of Technology (Natural Science),2016,30(4),27 (in Chinese).戴世娟,朱运田,陈锋.重庆理工大学学报(自然科学版),2016,30(4),27.
    3 Tang C B,Zheng C,Ma A M,et al.Chinese Journal of Rare Metals,2017,41(6),620 (in Chinese).唐长斌,郑超,马阿敏,等.稀有金属,2017,41(6),620.
    4 Tang C B,Liu D X,Tang B,et al.Applied Surface Science,2016,390,946.
    5 Duarte L T,Bolfarini C,Biaggio S R,et al.Materials Science & Engineering C,2014,41,343.
    6 Bai Q Y,Liu H P,Bi S F,et al.China Surface Engineering,2013,26(1),1 (in Chinese).白清友,刘海萍,毕四富,等.中国表面工程,2013,26(1),1.
    7 Meng X J,Shi J.Progress of Titanium Industry,2003,20(4),23 (in Chinese).孟祥军,时锦.钛工业进展,2003,20(4),23.
    8 Jin H X,Wei K X,Li J M,et al.The Chinese Journal of Nonferrous Metals,2015,25(2),280 (in Chinese).金和喜,魏克湘,李建明,等.中国有色金属学报,2015,25(2),280.
    9 Yan D P,Hilditch T,Kishawy H A,et al.Procedia Cirp,2013,8,123.
    10 Venkateswarlu V,Tripathy D,Rajagopal K,et al.Case Studies in Engineering Failure Analysis,2013,1(2),49.
    11 Zhu X Q,Shao H P,Niu C Z.Yunnan Chemical Technology,1997(3),50 (in Chinese).朱孝钦,郜华萍,牛存镇.云南化工,1997(3),50.
    12 Li A H.Design and manufacturing of coated carbide tool failure evolution in high speed milling of titanium alloy.Ph.D.Thesis,Shandong University,China,2013 (in Chinese).李安海.基于钛合金高速铣削刀具失效演变的硬质合金涂层刀具设计与制造.博士学位论文,山东大学,2013.
    13 Chang Y H,Liu T.Foundry Technology,2016(4),689 (in Chinese).常亚辉,刘涛.铸造技术,2016(4),689.
    14 Zhang L,Gao Q,Han Y.Journal of Materials Science & Technology,2016,32(9),919.
    15 Ma J,Wang C Z,Ban C L,et al.Vacuum,2016,125,48.
    16 Yu S R.Materials Science & Engineering,2001,18(2),131 (in Chinese).于思荣.材料科学与工程,2001,18(2),131.
    17 Khanna R,Kokubo T,Matsushita T,et al.Materials Science & Engineering C,2015,55,393.
    18 Huang P,Xu K W,Han Y.Rare Metal Materials and Engineering,2003,32(4),272 (in Chinese).黄平,徐可为,憨勇.稀有金属材料与工程,2003,32(4),272.
    19 Ni E X,Yan J K,Tang W X,et al.Materials Review,2015,29(S1),457 (in Chinese).倪尔鑫,严继康,唐婉霞,等.材料导报,2015,29(专辑25),457.
    20 束德林.工程材料力学性能,机械工业出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700