Geminal Cross Coupling (GCC) Reaction for AIE Materials
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Geminal Cross Coupling (GCC) Reaction for AIE Materials
  • 作者:Qi ; Yu ; Ya-Long ; Wang ; Ze-Qiang ; Chen ; Peng-Ju ; Zhao ; Cheng ; Fan ; Chong ; Li ; Ming-Qiang ; Zhu
  • 英文作者:Qi Yu;Ya-Long Wang;Ze-Qiang Chen;Peng-Ju Zhao;Cheng Fan;Chong Li;Ming-Qiang Zhu;Wuhan National Laboratory for Optoelectronics,School of Optical and Electronic Information,Huazhong University of Science and Technology;
  • 英文关键词:GCC reaction;;AIE;;Tetraarylethylene;;Conjugated polymer;;Imaging
  • 中文刊名:GFZK
  • 英文刊名:高分子科学(英文版)
  • 机构:Wuhan National Laboratory for Optoelectronics,School of Optical and Electronic Information,Huazhong University of Science and Technology;
  • 出版日期:2019-03-19
  • 出版单位:Chinese Journal of Polymer Science
  • 年:2019
  • 期:v.37
  • 基金:financially supported by the National Basic Research Program (973) of China (Nos. 2015CB755602 and 2013CB922 104);; the National Natural Science Foundation of China (Nos. 51673077, 21474034, and 51603078);; the Fundamental Research Funds for the Central Universities (HUST: 2016YXMS029 and HUST: 2018KFYXKJC033);; the Nature Science Foundation of Hubei Province (No. 2018CFB574)
  • 语种:英文;
  • 页:GFZK201904003
  • 页数:13
  • CN:04
  • ISSN:11-2015/O6
  • 分类号:43-55
摘要
Tetraphenylethylene(TPE) derivatives are typical aggregation-induced emission(AIE) molecules, which have been widely investigated and applicated. The Rathore's procedures and McMurry reaction are the two frequently used methods for synthesizing the TPE derivatives. The complex processes and low tolerance of active function groups make the TPE with limited structures and properties in some degree. Very recently, a novel strategy, named geminal cross coupling(GCC) reaction, is developed for designing and synthesizing various topological small molecules and polymers with rich optical properties beyond simple TPE compounds, and becomes a powerful synthesis method to AIE materials. This review overviews the current progresses of AIE molecules and polymers prepared by GCC as well as their applications. We believe that GCC reaction will have a bright future in the development of the next generation of tetraarylethylene(TAE)-kind AIE materials.
        Tetraphenylethylene(TPE) derivatives are typical aggregation-induced emission(AIE) molecules, which have been widely investigated and applicated. The Rathore's procedures and McMurry reaction are the two frequently used methods for synthesizing the TPE derivatives. The complex processes and low tolerance of active function groups make the TPE with limited structures and properties in some degree. Very recently, a novel strategy, named geminal cross coupling(GCC) reaction, is developed for designing and synthesizing various topological small molecules and polymers with rich optical properties beyond simple TPE compounds, and becomes a powerful synthesis method to AIE materials. This review overviews the current progresses of AIE molecules and polymers prepared by GCC as well as their applications. We believe that GCC reaction will have a bright future in the development of the next generation of tetraarylethylene(TAE)-kind AIE materials.
引文
1 Luo, J.; Xie,Z.; Lam,J. W. Y.; Cheng, L.; Chen,H.; Qiu,C.;Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole.Chem. Commun. 2001, 1740-174.
    2 An, B. K.; Kwon, S. K.; Jung, S. D.; Park, S. Y. Enhanced emission and its switching in fluorescent organic nanoparticles,J. Am. Chem. Soc. 2002,124, 14410-14415.
    3 Tang, B. Z.; Zhan, X.; Yu, G.; Sze Lee, P. P.; Liu, Y.; Zhu, D.Efficient blue emission from siloles. J. Mater. Chem. 2001, 11,2974-2978.
    4 Li, Z.; Dong, Y.; Mi, B.; Tang, Y.; Haussler, M.; Tong, H.;Dong, Y.; Lam, J. W. Y.; Ren, Y.; Sung, H. H. Y.; Wong, K.S.; Gao, P.; Williams, I. D.; Kwok, H. S.; Tang, B. Z. Structural control of the photoluminescence of silole regioisomers and their utility as sensitive regiodiscriminating chemosensors and efficient electroluminescent materials. J. Phys. Chem. B 2005,109, 10061-10066.
    5 Zhao, Z.; Chen, S.; Lam, J. W. Y.; Jim, C. K. W.; Chan, C. Y.K.; Wang,Z.; Lu,P.; Deng,C.; Kwok,H. S.; Ma,Y.; Tang,B.Z. Steric hindrance,electronic communication,and energy transfer in the photo-and electroluminescence processes of aggregation-induced emission luminogens. J. Phys. Chem. C2010,114, 7963-7972.
    6 Liu, Y.; Chen,S.; Lam,J. W. Y.; Lu, P.; Kwok,R. T. K.;Mahtab, F.; Kwok, H. S.; Tang, B. Z. Tuning the electronic nature of aggregation-induced emission luminogens with enhanced hole-transporting property. Chem. Mater. 2011, 23,2536-2544.
    7 Liu, Y.; Deng, C.; Tang, L.; Qin, A.; Hu, R.; Sun, J. Z.; Tang,B. Z. Specific detection of D-glucose by a tetraphenylethenebased fluorescent sensor. J. Am. Chem. Soc. 2011,133,660-663.
    8 Liu,J.; Zhong,Y.; Lam,J. W. Y.; Lu,P.; Hong,Y.; Yu,Y.;Yue, Y.; Faisal, M.; Sung, H. H. Y.; Williams, I. D.; Wong, K.S.; Tang, B. Z. Hyperbranched conjugated polysiloles:Synthesis, structure, aggregation-enhanced emission, multicolor fluorescent photopatterning, and superamplified detection of explosives. Macromolecules 2010, 43, 4921-4936.
    9 Chen, S.; Liu,J.; Liu,Y.; Su,H.; Hong, Y.; Jim, C. K. W.;Kwok,R.T.K.;Zhao,N.;Qin,W.;Lam,J.W.Y.;Wong,K.S.; Tang, B. Z. An AIE-active hemicyanine fluorogen with stimuli-responsive red/blue emission:Extending the pH sensing range by"switch+knob"effect. Chem. Sci. 2012, 3,1804-1809.
    10 Peng,L.; Zhang, G.; Zhang,D.; Xiang,J.; Zhao, R.; Wang, Y.;Zhu, D. Fluorescence"turn-on"ensemble for acetylcholinesterase activity assay and inhibitor screening. Org. Lett. 2009,11, 4014-4017.
    11 Hong, Y.; Meng, L.; Chen, S.; Leung, C. W. T.; Da, L. T.; Faisal, M.; Silva, D. A.; Liu, J.; Lam, J. W. Y.; Huang, X.; Tang, B.Z. Monitoring and inhibition of insulin fibrillation by a small organic fluorogen with aggregation-induced emission characteristics. J. Am:Chem. Soc:2012, 134, 1680-1689.
    12 Shi, H.; Liu, J.; Geng, J.; Tang, B. Z.; Liu, B. Specific detection of integrinαvβ3 by light-up bioprobe with aggregation-induced emission characteristics. J. Am. Chem. Soc. 2012, 134,9569-9572.
    13 Shi, H.; Kwok, R. T. K.; Liu, J.; Xing, B.; Tang, B. Z.; Liu, B.Real-time monitoring of cell apoptosis and drug screening using fluorescent light-up probe with aggregation-induced emission characteristics. J. Am. Chem. Soc. 2012. 134,17972-17981.
    14 Yuan, Y.; Kwok, R. T. K.; Tang, B. Z.; Liu, B. Targeted theranostic platinum(IV)prodrug with a built-in aggregation-induced emission light-up apoptosis sensor for noninvasive early evaluation of its therapeutic responses in situ. J. Am. Chem.Soc. 2014,136, 2546-2554.
    15 Dong,Y.; Xu,B.; Zhang, J.; Tan,X.; Wang,L.; Chen,J.; Lv,H.; Wen, S.; Li, B.; Ye, L.; Zou, B.; Tian, W. Piezochromic luminescence based on the molecular aggregation of 9,10-bis((E)-2-(pyrid-2-yl)vinyl)anthracene. Angew. Chem. Int. Ed.2012, 51, 10782-10785.
    16 An, B.-K.; Gierschner, J.; Park, S. Y.π-Conjugated cyanostilbene derivatives:A unique self-assembly motif for molecular nanostructures with enhanced emission and transport. Acc.Chem. Res. 2012, 45, 544-554.
    17 Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res. 2013, 46, 2441-2453.
    18 Banerjee, M. Practical synthesis of unsymmetrical tetraarylethylenes and their application for the preparation of[triphenylethylene-spacer-triphenylethylene] triads. J. Org. Chem.2007, 72, 8054-8061.
    19 McMurry, J. E.; Krepski, L. R. Synthesis of unsymmetrical olefins by titanium(0)induced mixed carbonyl coupling. Some comments on the mechanism of the pinacol reaction. J. Org.Chem. 1976, 41, 3929-3930.
    20 McMurry, J. E. Titanium-induced dicarbonyl-coupling reactions. Acc. Chem. Res. 1983, 16, 405-411.
    21 Duan, X. F.; Zeng, J.; Lü, J. W.; Zhang, Z. B. Insights into the general and efficient cross McMurry reactions between ketones. J. Org. Chem. 2006, 71, 9873-9876.
    22 Zhang, G.-F.; Wang, H.; Aldred, M. P.; Chen, T.; Chen, Z. Q.;Meng, X.; Zhu, M. Q. General synthetic approach toward geminal-substituted tetraarylethene fluorophores with tunable emission properties:X-ray crystallography, aggregation-induced emission and piezofluorochromism. Chem. Mater. 2014, 26,4433-4446.
    23 Corey E. J. and Fuchs P. L. A synthetic method for formyl→ethynyl conversion(RCHO→RC≡CH or RC≡CR'). Tetrahedron Lett. 1972, 36, 3769-3772.
    24 Mei,J.; Hong,Y.; Lam,J. W. Y.; Qin,A.; Tang,Y.; Tang,B.Z. Aggregation-induced emission:The whole is more brilliant than the parts. Adv:Mater. 2014, 26, 5429-5479.
    25 Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission:Phenomenon, mechanism and applications. Chem.Commun. 2009, 4332-4353.
    26 Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev:2011, 40, 5361-5388.
    27 Hu, R.; Leung, N. L. C.; Tang, B. Z. AIE macromolecules:Syntheses, structures and functionalities. Chem. Soc. Rev. 2014,43, 4494-4562.
    28 Wang, M.; Zhang, G.; Zhang, D.; Zhu, D.; Tang, B. Z. Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature. J. Ma ter. Chem. 2010, 20, 1858-1867.
    29 Wang, J.; Mei, J.; Hu, R.; Sun, J. Z.; Qin, A.; Tang, B. Z. Click synthesis,aggregation-induced emission, E/Z isomerization,self-organization, and multiple chromisms of pure stereoisomers of a tetraphenylethene-cored luminogen. J. Am. Chem.Soc. 2012,134, 9956-9966.
    30 Shi, J.; Zhao, W.; Li, C.; Liu, Z.; Bo, Z.; Dong, Y.; Dong, Y.;Tang, B. Z. Switching emissions of two tetraphenylethene derivatives with solvent vapor, mechanical, and thermal stimuli.Chinese Sci. Bull. 2013, 58, 2723-2727.
    31 Zhang, G. F.; Chen, Z. Q.; Aldred,M. P.; Hu, Z.; Chen,T.;Huang, Z.; Meng, X.; Zhu, M. Q. Direct validation of the restriction of intramolecular rotation hypothesis via the synthesis of novel ortho-methyl substituted tetraphenylethenes and their application in cell imaging. Chem. Commun. 2014, 50,12058-12060.
    32 Zhang, G. F.; Aldred, M. P.; Chen, Z. Q.; Chen, T.; Meng, X.;Zhu, M. Q. Efficient green-red piezofluorochromism of bisanthracene-modified dibenzofulvene. RSC Adv. 2015, 5, 1079-1082.
    33 Gabr, M. T.; Pigge, F. C. Synthesis and aggregation-induced emission properties of pyridine and pyridinium analogues of tetraphenylethylene. RSC Adv. 2015, 5, 90226-90234.
    34 Gabr, M. T.; Pigge, F. C. A selective fluorescent sensor for Zn2+based on aggregation-induced emission(AIE)activity and metal chelating ability of bis(2-pyridyl)diphenylethylene.Dalton Trans. 2016, 45, 14039-14043.
    35 Reedy, J. L.; Hedlund, D. K.; Gabr, M. T.; Henning, G. M.;Pigge, F. C.; Schultz, M. K. Synthesis and evaluation of tetraarylethylene-based mono-, bis-, and tris(pyridinium)derivatives for image-guided mitochondria-specific targeting and cytotoxicity of metastatic melanoma cells. Bioconjugate Chem.2016, 27, 2424-2430.
    36 Liu, J. Z.; Lam, J. W. Y.; Tang, B. Z. Acetylenic polymers:Syntheses, structures, and functions. Chem. Rev. 2009,109,5799-5867.
    37 Heeger, A. J. Semiconducting polymers:The third generation.Chem. Soc. Rev. 2010, 39, 2354-2371.
    38 Grimsdale, A. C.; Chan, K. L.; Martin, R. E.; Jokisz, P. G.;Holmes, A. B. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev.2009,109, 897-1091.
    39 Feng, X.; Liu, L.; Wang, S.; Zhu, D. Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors. Chem. Soc. Rev. 2010, 39,2411-2419.
    40 Zhang, K.; Hu, Z.; Sun, C.; Wu, Z.; Huang, F.; Cao, Y. Toward solution-processed high-performance polymer solar cells:From material design to device engineering. Chem. Mater.2016,29, 141-148.
    41 Alvarez, A.; Costa-Fernandez, J. M.; Pereiro, R.; Sanz-Medel,A.; Salinas-Castillo, A. Fluorescent conjugated polymers for chemical and biochemical sensing. TrAC, Trends Anal. Chem.2011,30, 1513-1525.
    42 Chen, M.; Shang, J.; Wang, Y.; Wu, K.; Kuttner, J.; Hilt, G.;Hieringer, W.; Gottfried, J. M. On-surface synthesis and characterization of honeycombene oligophenylene macrocycles.ACS Nano 2017, 11, 134-143.
    43 Xu, Y.; Jin, S.; Xu, H.; Nagai, A.; Jiang, D. Conjugated microporous polymers:Design, synthesis and application. Chem. Soc.Rev. 2013, 42, 8012-8031.
    44 Wu, C. F.; Szymanski, C.; McNeill, J. Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles.Langmuir 2006, 22, 2956-2960.
    45 Padmanaban, G.; Ramakrishnan, S. Fluorescence spectroscopic studies of solvent-and temperature-induced conformational transition in segmented poly[2-methoxy-5-(2'-ethylhexyl)oxy-1,4-phenylenevinylene](MEHPPV). J. Phys. Chem. B 2004,108, 14933-14941.
    46 Pecher, J.; Mecking, S. Nanoparticles of conjugated polymers.Chem. Rev. 2010, 110, 6260-6279.
    47 Pescitelli, G.; Omar, O. H.; Operamolla, A.; Farinola, G. M.; Di Bari, L. Chiroptical properties of glucose-substituted poly(pphenylene-ethynylene)s in solution and aggregate state. Macromolecules 2012, 45, 9626-9630.
    48 Tan, C. Y.; Pinto, M. R.; Schanze, K. S. Photophysics, aggregation and amplified quenching of a water-soluble poly(phenylene ethynylene). Chem. Commun. 2002, 446-447.
    49 Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z.Aggregation-induced emission:Together we shine, united we soar! Chem. Rev. 2015, 115, 11718-11940.
    50 Feng, H. T.; Yuan, Y. X.; Xiong, J. B.; Zheng, Y. S.; Tang, B.Z.. Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect. Chem. Soc. Rev. 2018, 47,7452-7476.
    51 Chen, Z. Q.; Chen, T.; Liu, J. X.; Zhang, G. F.; Li, C.; Gong,W. L.; Xiong, Z. J.; Xie, N. H.; Tang, B. Z.; Zhu, M. Q. Geminal cross-coupling of 1,1-dibromoolefins facilitating multiple topologicalπ-conjugated tetraarylethenes. Macromolecules2015, 48, 7823-7835.
    52 Chen,T.; Yin,H.; Chen,Z. Q.; Zhang, G. F.; Xie, N. H.; Li,C.;Gong, W. L.; Tang, B. Z.; Zhu, M. Q. Monodisperse AIE-active conjugated polymer nanoparticles via dispersion polymerization using geminal cross-coupling of 1,1-dibromoolefins.Small 2016, 12, 6547-6552.
    53 Zhou,Q. Y.; Xin,B.; Wang,Y. L.; Li, C.; Chen,Z. Q.; Yu,Q.;Huang, Z. L.; Zhu, M. Q. Geminal cross-coupling synthesis,ion-induced emission and lysosome imaging of cationic tetraarylethene oligoelectrolytes. Chem. Commun. 2018, 54,3617-3620.
    54 Iyoda, M.; Yamakawa, J.; Rahman, M. J. Conjugated macrocycles:Concepts and applications. Angew. Chem. Int. Ed. 2011,50, 10522-10553.
    55 Zhang, W.; Moore, J. S. Shape-persistent macrocycles:Structures and synthetic approaches from arylene and ethynylene building blocks.. Angew. Chem. Int. Ed. 2006, 45, 4416-4439.
    56 Luo, J.; Yan, Q.; Zhou,Y.; Li,T.; Zhu, N.; Bai, C.; Cao, Y.;Wang, J.; Pei, J.; Zhao, D. A photoswitch based on self-assembled single microwire of a phenyleneethynylene macrocycle. Chem. Commun. 2010, 46, 5125-5127.
    57 Reuter, R.; Wegner, H. A. Switchable 3D networks by light controlledπ-stacking of azobenzene macrocycles. Chem. Com mun. 2013, 49, 146-148.
    58 Astruc, D.; Boisselier, E.; Ornelas, C. Dendrimers designed for functions:From physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 2010, 110,1857-1959.
    59 Li, W. S.; Aida, T. Dendrimer porphyrins and phthalocyanines.Chem. Rev. 2009,109, 6047-6076.
    60 Grayson, S. M.; Frechet, J. M. J. Convergent dendrons and dendrimers:From synthesis to applications. Chem. Rev. 2001,101,3819-3867.
    61 Bosman, A. W.; Janssen, H. M.; Meijer, E. W. About dendrimers:Structure, physical properties, and applications.Chem. Rev. 1999, 99, 1665-1688.
    62 Baier, M. C.; Huber, J.; Mecking, S. Fluorescent conjugated polymer nanoparticles by polymerization in miniemulsion. J.Am. Chem. Soc. 2009, 131, 14267-14273.
    63 Fischer, C. S.; Baier, M. C.; Mecking, S. Enhanced brightness emission-tuned nanoparticles from heterodifunctional polyfluorene building blocks. J. Am. Chem. Soc. 2013, 135, 1148-54.
    64 Muenmart, D.; Foster, A. B.; Harvey, A.; Chen, M. T.; Navarro, O.; Promarak, V.; McCaim, M. C.; Behrendt, J. M.; Turner, M. L. Conjugated polymer nanoparticles by suzuki-miyaura cross-coupling reactions in an emulsion at room temperature.Macromolecules 2014, 47, 6531-6539.
    65 Wu, X.; Li, H.; Xu, B.; Tong, H.; Wang, L. Solution-dispersed porous hyperbranched conjugated polymer nanoparticles for fluorescent sensing of TNT with enhanced sensitivity. Polym.Chem. 2014, 5, 4521-4525.
    66 Chen, Y.; Bai, Y.; Han, Z.; He, W.; Guo, Z. Photoluminescence imaging of Zn2+in living systems. Chem. Soc. Rev. 2015,44, 4517-4546.
    67 Salinas, Y.; Martinez-Manez, R.; Marcos, M. D.; Sancenon, F.;Costero, A. M.; Parra, M.; Gil, S. Optical chemosensors and reagents to detect explosives. Chem. Soc. Rev. 2012,41,1261-1296.
    68 Yuan, W. Z.; Hu, R.; Lam, J. W. Y.; Xie, N.; Jim, C. K. W.;Tang, B. Z. Conjugated hyperbranched poly(aryleneethynylene)s:Synthesis, photophysical properties, superquenching by explosive, photopatternability, and tunable high refractive indices. Chem. Eur. J. 2012, 18, 2847-2856.
    69 Sanchez, J. C.; DiPasquale, A. G.; Rheingold, A. L.; Trogler,W. C. Synthesis, luminescence properties and explosives sensing with 1,1-tetraphenylsilole-and 1,1-silafluorene-vinylene polymers. Chem. Mater. 2007, 19, 6459-6470.
    70 Zhang,J.; Liu,Z.; Lian,P.; Qian,J.; Li,X.; Wang,L.; Fu,W.;Chen, L.; Wei, X.; Li, C. Selective imaging and cancer cell death via pH switchable near-infrared fluorescence and photothermal effects. Chem. Sci. 2016. 7, 5995-6005.
    71 Cai,Y.; Gui, C.; Samedov,K.; Su, H.; Gu,X.; Li,S.; Luo, W.;Sung, H. H. Y.; Lam, J. W. Y.; Kwok, R. T. K.; Williams, I. D.;Qin, A.; Tang, B. Z. An acidic pH independent piperazine-TPE AIEgen as a unique bioprobe for lysosome tracing. Chem. Sci.2017, 8, 7593-7603.
    72 Wang, H.; Fang, B.; Xiao, L.; Li, D.; Zhou, L.; Kong, L.; Yu,Y.; Li, X.; Wu, Y.; Hu, Z. A water-soluble"turn-on"fluorescent probe for specifically imaging mitochondria viscosity in living cells. Spectrochim. Acta, Part A 2018, 203, 127-131.
    73 Lee, S. C.; Heo, J.; Woo, H. C.; Lee, J. A.; Seo, Y. H.; Lee, C.L.; Kim, S.; Kwon, O. P. Fluorescent molecular rotors for viscosity sensors. Chem. Eur. J. 2018, 24, 13706-13718.
    74 Luo, Z. J.; Liu, B.; Zhu, K. N.; Huang, Y. Y.; Pan, C. J.; Wang,B. F.; Wang, L. An environment-sensitive fluorescent probe for quantification of human serum albumin:Design, sensing mechanism, and its application in clinical diagnosis of hypoalbuminemia. Dyes Pigments 2018, 152, 60-66.
    75 Gong, W. L.; Yan, J.; Zhao, L. X.; Li, C.; Huang, Z. L.; Tang,B. Z.; Zhu, M. Q. Single-wavelength-controlled in situ dynamic super-resolution fluorescence imaging for block copolymer nanostructures via blue-light-switchable FRAP. Photochem.Photobiol. Sci. 2016, 15, 1433-1441.
    76 Liu, J. X.; Xin, B.; Li, C.; Xie, N. H.; Gong, W. L.; Huang, Z.L.; Zhu, M. Q. PEGylated perylenemonoimide-dithienylethene for super-resolution imaging of liposomes. ACS Appl. Mater.Interfaces 2017, 9, 10338-10343.
    77 Yan, J.; Zhao, L. X.; Li, C.; Hu, Z.; Zhang, G. F.; Chen, Z. Q.;Chen, T.; Huang, Z. L.; Zhu, J.; Zhu, M. Q. Optical nanoimaging for block copolymer self-assembly. J. Am. Chem. Soc.2015,137, 2436-2439.
    78 Zhou, Q. Y.; Fan, C.; Li, C.; Wang, Y. L.; Chen, Z. Q.; Yu, Q.;Zhu, M. Q. AIE-based universal super-resolution imaging for inorganic and organic nanostructures. Mater. Horiz. 2018, 5,474-479.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700