锂离子电池核壳G@Cu_(0.85)Sn_(0.15)@C负极材料的改性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modification of Core-Shell G@Cu_(0.85)Sn_(0.15)@C Anode Materials for Lithium Ion Batteries
  • 作者:黄钊文 ; 李亚军 ; 肖文平 ; 胡社军 ; 侯贤华
  • 英文作者:HUANG Zhaowen;LI Yajun;XIAO Wenping;HU Shejun;HOU Xianhua;College of Electronic and Information Engineering Shunde Polytechnic;School of Physics and Telecommunication Engineering,South China Normal University;
  • 关键词:G@Cu0.85Sn0.15@C复合负极 ; 锂离子电池 ; 组分改性 ; 核壳结构
  • 英文关键词:G@Cu0.85Sn0.15@C compound anode;;lithium ion battery;;component modification;;core-shell structure
  • 中文刊名:HNSF
  • 英文刊名:Journal of South China Normal University(Natural Science Edition)
  • 机构:顺德职业技术学院电子与信息工程学院;华南师范大学物理与电信工程学院;
  • 出版日期:2017-06-25
  • 出版单位:华南师范大学学报(自然科学版)
  • 年:2017
  • 期:v.49
  • 基金:国家自然科学基金-广东联合基金项目(U1601214);; 广东省科技计划项目(2016A050503040,2016B010114002);; 广东省自然科学基金项目(2014A030313436,2015A030310522);; 广州市科技计划项目(201607010322,201607010274)
  • 语种:中文;
  • 页:HNSF201703006
  • 页数:6
  • CN:03
  • ISSN:44-1138/N
  • 分类号:31-36
摘要
针对锡负极材料充放电过程中的体积效应,综合采用组分改性与结构改性的研究方法,合成Cu_(0.85)Sn_(0.15)合金负极材料,研究Cu的掺入对Sn电化学稳定性的影响,同时基于优化改性的Cu_(0.85)Sn_(0.15)合金开展核壳结构设计,研究最佳核壳结构构造工艺.结果表明,掺入Cu能在一定程度上改善Sn的循环稳定性,Cu_(0.85)Sn_(0.15)样品的容量在60次循环后趋于稳定,库伦效率较高;核壳结构处理能大幅提升Cu_(0.85)Sn_(0.15)合金负极材料的循环稳定性,采用球形改性天然石墨作为内核的G@Cu_(0.85)Sn_(0.15)@C负极材料首次放电比容量接近800 m Ah/g,充电比容量最大值超过了500 m Ah/g,100次容量保持率大于85%.核壳结构能将Cu_(0.85)Sn_(0.15)合金的体积效应控制在"囚笼"式结构内,利于材料容量的发挥及循环稳定性的提升.核壳结构的可控制备对实现锡基合金负极材料的产业化具有重要的作用.
        Based on the component and structure modifications,Cu_(0.85)Sn_(0.15) alloy anode material was synthesized,and the preparation technology of the core-shell structure was studied,to solve the volume expansion during the charge and discharge process of Sn-based anode materials. The results showed that,the addition of Cu could to some extent improve the cyclic stability. The capacity of the Cu_(0.85)Sn_(0.15) sample became stable after 60 cycles,with high coulomb efficiency. The core-shell structure could dramatically improve the cyclic stability of the Cu_(0.85)Sn_(0.15) alloy,for G@Cu_(0.85)Sn_(0.15)@ C whose core was modificated by natural spherical graphite,the initial specific discharge capacity was nearly 800 m Ah/g,the max charge capacity was higher than 500 m Ah/g,and the capacity retention of 100 cycles was higher than 85%. The volume expansion can be contorlled within the "cage structure"by the core-shell structure,which benefits for the capacity performance and the improvement of the cyclic stability. The controllable preparation of the core-shell structure is important for the commercialization of Sn-based anode materials.
引文
[1]FOTOUHI A,AUGER D J,PROPP K,et al.A review on electric vehicle battery modelling:from lithium-ion toward lithium-sulphur[J].Renewable&Sustainable Energy Reviews,2016,56:1008-1021.
    [2]WARNER J.Lithium-ion battery packs for EVs-lithiumion batteries[M].Lithium-Ion Batteries,[S.l.]:Elsevier,2014:127-150.
    [3]HORIE H.5-EVs and HEVs:the need and potential functions of batteries for future systems[M].Lithium-Ion Batteries,[S.l.]:Elsevier,2014:83-95.
    [4]BAI X J,YU Y Y,KUNG H H,et al.Si@Si Ox/graphene hydrogel composite anode for lithium-ion battery[J].Journal of Power Sources,2016,306:42-48.
    [5]HUANG Y G,PAN Q C,WANG H Q,et al.Sn/Sn Oxembedded in carbon nanosheets as high-performance anode material for Lithium ion battery[J].Ceramics International,2015,42(3):4586-4593.
    [6]YAN Y,BEN L B,ZHAN Y,et al.Nano-Sn embedded in expanded graphite as anode for lithium ion batteries with improved low temperature electrochemical performance[J].Electrochimica Acta,2015,187:186-192.
    [7]AGUBRA V A,ZUNIGA L,GARZA D D L,et al.Forcespinning:a new method for the mass production of Sn/C composite nanofiber anodes for lithium ion batteries[J].Solid State Ionics,2016,286:72-82.
    [8]WEI L,ZHANG K,TAO Z,et al.Sn-Al core-shell nanocomposite as thin film anode for lithium-ion batteries[J].Journal of Alloys&Compounds,2015,644:742-749.
    [9]UYSAL M,CETINKAYA T,ALP A,et al.Active andinactive buffering effect on the electrochemical behavior of Sn-Ni/MWCNT composite anodes prepared by pulse electrodeposition for lithium-ion batteries[J].Journal of Alloys&Compounds,2015,645(2):235-242.
    [10]WU X,ZHANG S,QI T,et al.Novel insight toward engineering of arrayed Cu@Sn nanoelectrodes:rational microstructure refinement and its remarkable“harvesting effect”on lithium storage capability[J].Journal of Power Sources,2016,307:753-761.
    [11]YUI Y,HYAYASHI M,HAYASHI K,et al.Electrochemical properties of Sn-Co electrode with various kinds of binder materials for sodium ion batteries[J].Solid State Ionics,2016,288:219-223.
    [12]SCHMUELLING G,OEHL N,FROMM O,et al.Synthesis and electrochemical characterization of nano-sized Ag4Sn particles as anode material for lithium-ion batteries[J].Electrochimica Acta,2016,196:597-602.
    [13]LIU C J,XUE F H,HUANG H,et al.Preparation andelectrochemical properties of Fe-Sn(C)nanocomposites as anode for lithium-ion batteries[J].Electrochimica Acta,2014,129(10):93-99.
    [14]GUO W,LI F,DUAN X C,et al.Synthesis of Cd-SnSn O2@C heterocomposite anode with superior electrochemical performance[J].Materials Letters,2016,166:210-214.
    [15]CUI C,LIU X,WU N,et al.Facile synthesis of core/shell-structured Sn/onion-like carbon nanocapsules as highperformance anode material for lithium-ion batteries[J].Materials Letters,2015,143:35-37.
    [16]ZHANG J,MA Z S,JIANG W J,et al.Sandwich-like CNTs@Sn O2/Sn O/Sn anodes on three-dimensional Ni foam substrate for lithium ion batteries[J].Journal of Electroanalytical Chemistry,2016,767:49-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700