等离子体激励器在航空航天工程中的应用前景
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Prospective of Plasma Actuators in Aerospace Engineering
  • 作者:SHANG ; Joseph ; J ; S ; 严红 ; 刘凡
  • 英文作者:SHANG Joseph J S;YAN Hong;LIU Fan;Department of Mechanical and Material Engineering,Wright State University;School of Power and Energy,Northwestern Polytechnical University;Shanxi Key Laboratory of Internal Aerodynamics in Aero-Engine,Northwestern Polytechnical University;Collaborative Innovation Center for Advanced Aero-Engine;
  • 关键词:等离子体激励器 ; 电磁力 ; 流动控制 ; 超声速流动 ; 未来创新
  • 英文关键词:plasma actuators;;electromagnetic force;;flow control;;supersonic flow;;future innovation
  • 中文刊名:QTWL
  • 英文刊名:Physics of Gases
  • 机构:莱特州立大学机械与材料工程系;西北工业大学动力与能源学院;陕西省航空发动机内流动力学重点实验室西北工业大学;先进航空发动机协同创新中心;
  • 出版日期:2018-03-15
  • 出版单位:气体物理
  • 年:2018
  • 期:v.3;No.14
  • 基金:国家自然科学基金(11672242)
  • 语种:中文;
  • 页:QTWL201802001
  • 页数:12
  • CN:02
  • ISSN:10-1384/O3
  • 分类号:3-14
摘要
文章基于等离子体的Joule加热、静电力、Hall效应以及Lorentz加速度等固有特性,对等离子体在航空航天领域(不包括电推进和飞行器再入热防护方面)中的应用进行总结及评估.等离子体激励器在亚声速流到高超声速流的整个空气动力学领域及稀薄流领域,得到了广泛的应用.真正引人瞩目的是,与所控制的流场相比,应用中所加入的电磁力或能量仅仅与其扰动水平相当.因此,有效的流动控制往往就限制在像流动分离、流体动力学不稳定性、动态失速和涡破碎等动力学分岔问题中.有效的控制应用通常是利用有黏-无黏流相互作用的放大效应、外部磁场或微波能量的加入等来增强其控制效果.最后文章根据这些评估,对未来学科前沿提出了几点基础创新研究方向的建议.
        The effectiveness utilizing plasma as a working medium for viable aerospace applications beyond electric propulsion and thermal protection for earth reentry were summarized and assessed.The analysis was based on the intrinsic properties through Joule heating,electrostatic force,Hall effects,and Lorentz acceleration.The plasma actuator has been implemented for the entire aerodynamic domains from subsonic to hypersonic flows and in the rarefied and continuum regimes.It is truly remarkable that the electromagnetic force and energy in applications are involved only on a perturbation level in comparison with the flow field to be modified.Hence,the effectiveness of flow control is limited at aerodynamic bifurcations such as the point of flow separation,hydrodynamic instability,dynamic stall,and vortex breakdown.Creditable applications often have to amplify by viscous-inviscid interaction,externally applied magnetic field,and microwave energy transfer to increase its effectiveness.Based on these assessments,future basic research innovations were offered to the last few scientific research frontiers.
引文
[1]Shang J S,Huang P G,Yan H,et al.Computational electrodynamic simulation of direct current discharge[J].Journal of Applied Physics,2009,105(2):023303.
    [2]Boeuf J P,Pitchford L C.Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge[J].Journal of Applied Physics,2005,97(10):103307.
    [3]Shang J S,Roveda F,Huang P G.Electrodynamic force of dielectric barrier discharge[J].Journal of Applied Physics,2011,109(11):113301.
    [4]Eliasson B,Kogelschatz U.Nonequilibrium volume plasma chemical processing[J].IEEE Transactions on Plasma Science,1991,19(6):1063-1077.
    [5]Enloe C L,Mc Laughlin T E,Van Dyken R D,et al.Mechanisms and responses of a single dielectric barrier plasma actuator:plasma morphology[J].AIAA Journal,2004,42(3):589-594.
    [6]Hall E H.On a new action of the magnet on electric currents[J].American Journal of Mathematics,1879,2(3):287-292.
    [7]Rosa R J.Magnetohydrodynamic energy conversion[M].Washington:Hemisphere Publishing,1987.
    [8]Meyerand Jr R G,Haught A F.Gas breakdown at optical frequencies[J].Physical Review Letters,1963,11(9):401-403.
    [9]Raizer Y P.Breakdown and heating of gases under the influence of a laser beam[J].Soviet Physics Uspekhi,1966,8(5):650-673.
    [10]Yan H,Adelgren R,Boguszko M,et al.Laser energy deposition in quiescent air[J].AIAA Journal,2003,41(10):1988-1995.
    [11]Adelgren R G,Yan H,Elliott G S,et al.Control of Edney IV interaction by pulsed laser energy deposition[J].AIAA Journal,2005,43(2):256-269.
    [12]Verboncoeur J P.Particle simulation of plasmas:review and advances[J].Plasma Physics and Controlled Fusion,2005,47(5A):A231-A260.
    [13]Clarke J F,Mc Chesney M.The dynamics of real gases[M].Washington:Butterworths,1964.
    [14]Shang J J S.Computational electromagnetic-aerodynamics[M].Hoboken:IEEE,2016.
    [15]Bogdanov E A,Kudryavtsev A A,Kuranov A L,et al.2D simulation and scaling of DBD plasma actuator in air[C].46thAIAA Aerospace Sciences Meeting and Exhibit,Reno:AIAA,2008.
    [16]Surzhikov S T,Shang J S.Two-component plasma model for two-dimensional glow discharge in magnetic field[J].Journal of Computational Physics,2004,199(2):437-464.
    [17]Raizer Y P.Gas discharge physics[M].Berlin:SpringerVerlag,1991.
    [18]Moreau E.Airflow control by non-thermal plasma actuators[J].Journal of Physics D:Applied Physics,2007,40(3):605-636.
    [19]Hayes W D,Probstein R F.Hypersonic flow theory[M].New York:Academic Press,1959.
    [20]Shang J S,Surzhikov S T.Magnetoaerodynamic actuator for hypersonic flow control[J].AIAA Journal,2005,43(8):1633-1652.
    [21]Borghi C A,Carraro M R,Cristofolini A,et al.Magnetohydrodynamic interaction in the shock layer of a wedge in a hypersonic flow[J].IEEE Transactions on Plasma Science,2006,34(5):2450-2463.
    [22]Shang J S.Electrostatic-aerodynamic compression in hypersonic cylindrical inlet[J].Communications in Computational Physics,2008,4(4):838-859.
    [23]Shang J S,Kimmel R L,Menart J A,et al.Hypersonic flow control using surface plasma actuator[J].Journal of Propulsion and Power,2008,24(5):923-934.
    [24]Yan H,Gaitonde D.Effect of thermally induced perturbation in supersonic boundary layers[J].Physics of Fluids,2010,22(6):064101.
    [25]Yan H,Liu F,Xu J,et al.Study of oblique shock wave control by surface arc discharge plasma[J].AIAA Journal,2018,56(2):532-541.
    [26]Kong J A.Electromagnetic wave theory[M].New York:John Wiley&Sons,1986.
    [27]Corke T C,Post M L,Orlov D M.SDBD plasma enhanced aerodynamics:concepts,optimization and applications[J].Progress in Aerospace Sciences,2007,43(7/8):193-217.
    [28]Nishihara M,Takashima K,Rich J W,et al.Mach 5bow shock control by a nanosecond pulse surface dielectric barrier discharge[J].Physics of Fluids,2011,23(6):066101.
    [29]Ziemer R W.Experimental investigation in magnetoaerodynamics[J].ARS Journal,1959,29(9):642-647.
    [30]Corke T C,Enloe C L,Wilkinson S P.Dielectric barrier discharge plasma actuators for flow control[J].Annual Review of Fluid Mechanics,2010,42:505-529.
    [31]Goebel D M,Katz I.Fundamentals of electric propulsion:ion and hall thrusters[M].New York:John Wiley&Sons,2008.
    [32]Jeffrey A,Taniuti T.Non-linear wave propagation[M].New York:Academic Press,1964.
    [33]Brio M,Wu C C.An upwind differencing scheme for the equations of ideal magnetohydrodynamics[J].Journal of Computational Physics,1988,75(2):400-422.
    [34]Mitchner M,Kruger C H.Partially ionized gases[M].New York:John Wiley&Sons,1973.
    [35]Bittencourt J A.Fundamentals of plasma physics[M].Oxford:Pergamon Press,1986.
    [36]Alfven H.Cosmical electrodynamics[M].Oxford:Clarendon Press,1950.
    [37]Reshotko E.Boundary-layer stability and transition[J].Annual Review of Fluid Mechanics,1976,8:311-349.
    [38]Sonju O K,Kruger C H.Experiments on Hartmann channel flow in plasmas[J].Physics of Fluids,1969,12(12):2548-2552.
    [39]Starikovskaia S M.Plasma assisted ignition and combustion[J].Journal of Physics D:Applied Physics,2006,39(16):R265-R299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700