基于关键源区识别的饮用水水源保护区划研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Drinking Water Source Divisions Based on Identification of Critical Source Areas
  • 作者:耿润哲 ; 殷培红 ; 马茜
  • 英文作者:GENG Runzhe;YIN Peihong;MA Qian;Policy Research Center for Environment and Economy,Ministry of Environmental Protection;
  • 关键词:饮用水源 ; SWAT模型 ; 关键源区识别 ; 面源污染
  • 英文关键词:drinking water sources;;SWAT model;;critical source areas identification;;non-point source pollution
  • 中文刊名:HJKX
  • 英文刊名:Research of Environmental Sciences
  • 机构:环境保护部环境与经济政策研究中心;
  • 出版日期:2017-03-15
  • 出版单位:环境科学研究
  • 年:2017
  • 期:v.30;No.230
  • 基金:国家自然科学基金青年科学基金项目(41601551);; 环境保护部第三批城环总规试点项目(YGCQ-GGQY-201418);; 国家水体污染控制与治理科技重大专项(2013ZX07602-002)
  • 语种:中文;
  • 页:HJKX201703001
  • 页数:11
  • CN:03
  • ISSN:11-1827/X
  • 分类号:4-14
摘要
准确划定饮用水水源保护区是实现饮用水安全精细化管理的重要前提.基于源头削减和全过程协同管理的思路,将GIS平台、Arc SWAT模型、成本-效益分析技术相结合,以贵州省红枫湖饮用水水源保护区为例,通过对近5年(2010—2014年)水污染负荷特征进行模拟,识别影响水环境污染控制的关键源区,在此基础上划定水源保护区.结果表明:(1)研究区总氮、总磷污染负荷主要来源为农业面源,其中农业种植和畜禽养殖的负荷贡献分别达到89.7%和91.8%,总氮和总磷负荷高风险区主要集中在流域西北部地势较高且农业耕作活动频繁区域;(2)污染控制措施的成本效益分析表明,测土配方施肥、1°~15°坡耕地等高植物篱、保护性耕作、植被缓冲带的成本-效益比较高,在该区域水环境污染控制中具有较高的推广应用价值;(3)基于水污染关键源区识别结果,划定饮用水源四级风险区,其中一级、二级风险区总面积为97.6 km~2,仅占原饮用水水源一、二级保护区面积的41.4%,可削减总氮、总磷负荷的60%~70%,所需的搬迁成本仅为原划定方案的35%.研究结果可为我国中西部人口密度大且逐水而居的地区饮用水水源保护区及管控政策的制订提供理论基础和技术参考.
        With safe drinking water essential for human well-being,a holistic and adaptive framework is necessary to protect drinking water sources and consumer supply infrastructure. In this paper,GIS technology,the Soil and Water Assessment Tool(SWAT) nonpoint source model,and remedial cost-effectiveness analysis were used to assess strategies for rezoning drinking water source areas in the upper watershed of the Hongfenghu Reservoir. This reservoir is the major drinking water source for Guiyang City. The results show that:(1)Agricultural non-point sources were the major cause of water pollution; Total nitrogen(TN) and phosphorus(TP) load from tillage and livestock sources accounted for 89. 7% and 91. 8%,respectively; TN and TP loads were primarily from the towns of Liuguang,Huangla,Jiuzhou and Baiyun,which were identified as the critical towns for water pollution control.(2) Soil testing and fertilizer recommendations,contour hedgerow strips,conservation tillage,and buffer strips were the most cost-effective control practices in the reservoir watershed;(3)Four grade zones for drinking water source protection in the reservoir watershed were divided into divisional zones. The area of first and second grade zones was 97. 6 km~2 and accounted for 41. 4% of the original drinking water protection zones,where a 60%-70% reduction in pollutant load could be achieved through implementation of best management practices(BMPs) in the identified critical source areas. In the first grade zones,district policy to protect the Hongfenghu Reservoir should be implemented,including enforcement of immigrant relocation and reduction of livestock numbers,and returning land tilled for grain forestry. In the second grade zones,a series of less restrictive policies including optional partial migration(this policy can save 35% of the total cost for migration) and elimination of livestock should be implemented. In the third and fourth grade zones,a number of comprehensive policies should be implemented to achieve the most cost-beneficial actions balancing drinking water protection and local economic development. These include construction of manure storage facilities,soil testing to determineappropriate fertilizer applications,and an improvement of sewage treatment facilities of rural communities. This research can provide a theoretical and technical basis for drinking water source area protection in similar regions of the country,where water quality is impaired and protection is required.
引文
[1]环境保护部.2015年中国环境状况公报[R].北京:环境保护部,2016.
    [2]匡耀求,黄宁生.中国水资源利用与水环境保护研究的若干问题[J].中国人口·资源与环境,2013(4):29-33.KUANG Yaoqiu,HUANG Ningsheng.Several issues about the research on the water resources utilization and water environment protection in China[J].China Population,Resources and Environment,2013(4):29-33.
    [3]DUPAS R,PARNAUDEAU V,REAU R,et al.Integrating local knowledge and biophysical modeling to assess nitrate losses from cropping systems in drinking water protection areas[J].Environmental Modelling&Software,2015,69:101-110.
    [4]WALCHER M,BORMANN H.On the transferability of the concept of drinking water protection zones from EU to Latin American countries[J].Water Resources Management,2015,29(6):1803-1822.
    [5]ROUSE M J.Water worldwide-drinking water quality regulation:where are we in a continuing evolution?[J].Journal-American Water Works Association,2016,108(8):20-24.
    [6]汪林,朱京海,刘家斌.饮用水水源保护区划分问题探讨[J].环境保护科学,2005(5):71-73.WANG Lin,ZHU Jinghai,LIU Jiabin.Discussion on partition of drinking water sources conservation areas[J].Environmental Protection Science,2005(5):71-73.
    [7]易雯,付青,郑丙辉,等.非潮汐河流型饮用水水源保护区经验值划分法及实例应用[J].水资源保护,2011(4):62-66.YI Wen,FU Qing,ZHENG Binhui,et al.An empirical method for delineating riverine source water protection areas and its application[J].Water Resources Protection,2011(4):62-66.
    [8]李云祯,赵希锦,佟洪金.基于二维水质模型的饮用水水源保护区划分[J].水资源与水工程学报,2013(1):181-184.LI Yunzhen,ZHAO Yejin,TONG Hongjin.Partition of drink water protected zone based on two dimension water quality model[J].Journal of Water Resources and Water Engineering,2013(1):181-184.
    [9]周贤宾,吴建,詹中英,等.EFDC模型在饮用水源保护区划分中的应用研究:以杭嘉湖地区某水厂为例[J].环境科学导刊,2009(2):30-32.ZHOU Xianbin,WU Jian,ZHAN Zhongying,et al.Application study of EFDC on division of drinking water source conservation area by taking one drinking water plant in Hangjiahu region as a case[J].Environmental Science Survey,2009(2):30-32.
    [10]张军锋,张建永,杨玉霞,等.湖库型饮用水水源地保护区划分技术研究[J].华北水利水电学院学报,2013(2):27-29.ZHANG Junfeng,ZHANG Jianyong,YANG Yuxia,et al.Research on delineating drinking source water protection areas with the lake and reservoir type[J].Journal of North China Institute of Water Conservancy and Hydroelectric Power,2013(2):27-29.
    [11]陈学林,胡兴林,王双合,等.地下水饮用水水源地保护区划分关键技术研究[J].水文,2013(6):68-71.CHEN Xuelin,HU Xinglin,WANG Shuanghe,et al.Application of hydrologic basic data universal platform in flood forecasting and hydrologic data processing[J].Journal of China Hydrology,2013(6):68-71.
    [12]侯俊,王超,兰林,等.我国饮用水水源地保护法规体系现状及建议[J].水资源保护,2009(1):79-82.HOU Jun,WANG Chao,LAN Lin,et al.Legal system for drinking water source protection in China[J].Water Resources Protection,2009(1):79-82.
    [13]MCCARTY J A,HAGGARD B E.Can we manage nonpoint-source pollution using nutrient concentrations during seasonal baseflow?[J].Agricultural&Environmental Letters,2016.doi:10.2134/ael2016.03.0015.
    [14]THOMAS I,JORDAN P,MELLANDER P E,et al.Improving the identification of hydrologically sensitive areas using Li DAR DEMs for the delineation and mitigation of critical source areas of diffuse pollution[J].Science of the Total Environment,2016,556:276-290.
    [15]TRIPATHI M,PANDA R,RAGHUWANSHI N.Development of effective management plan for critical subwatersheds using SWAT model[J].Hydrological Processes,2005,19(3):809-826.
    [16]HOWARTH R W,SHARPLEY A,WALKER D.Sources of nutrient pollution to coastal waters in the United States:implications for achieving coastal water quality goals[J].Estuaries,2002,25(4):656-676.
    [17]SHARPLEY A N,WELD J L,BEEGLE D B,et al.Development of phosphorus indices for nutrient management planning strategies in the United States[J].Journal of Soil and Water Conservation,2003,58(3):137-152.
    [18]GHEBREMICHAEL L T,VEITH T L,HAMLETT J M.Integrated watershed-and farm-scale modeling framework for targeting critical source areas while maintaining farm economic viability[J].Journal of Environmental Management,2013,114:381-394.
    [19]BAIRD J,PLUMMER R,MORRIS S,et al.Enhancing source water protection and watershed management:lessons from the case of the New Brunswick Water Classification Initiative[J].Canadian Water Resources Journal/Revue Canadienne des Ressources Hydriques,2014,39(1):49-62.
    [20]SHEN Z,ZHONG Y,HUANG Q,et al.Identifying non-point source priority management areas in watersheds with multiple functional zones[J].Water Research,2015,68:563-571.
    [21]LEMUNYON J,GILBERT R.The concept and need for a phosphorus assessment tool[J].Journal of Production Agriculture,1993,6(4):483-486.
    [22]HAYGARTH P M,CONDRON L M,HEATHWAITE A L,et al.The phosphorus transfer continuum:linking source to impact with an interdisciplinary and multi-scaled approach[J].Science of the Total Environment,2005,344(1/2/3):5-14.
    [23]VEITH T,WOLFE M,HEATWOLE C.Cost-effective BMP placement:optimization versus targeting[J].Transactions-American Society of Agricultural Engineers,2004,47(5):1585-1596.
    [24]FASSIO A,GIUPPONI C,HIEDERER R,et al.A decision support tool for simulating the effects of alternative policies affecting water resources:an application at the European scale[J].Journal of Hydrology,2005,304(1):462-476.
    [25]HSIEH C D,YANG W F.Optimal nonpoint source pollution control strategies for a reservoir watershed in Taiwan[J].Journal of Environmental Management,2007,85(4):908-917.
    [26]PANAGOPOULOS Y,MAKROPOULOS C,BALTAS E,et al.SWAT parameterization for the identification of critical diffuse pollution source areas under data limitations[J].Ecological Modelling,2011,222(19):3500-3512.
    [27]SHEN Z,CHEN L,XU L.A topography analysis incorporated optimization method for the selection and placement of best management practices[J].Plos One,2013,8(1):e54520.
    [28]环境保护部环境与经济政策研究中心.贵安新区环境保护规划(2013—2030)[R].北京:环境保护部环境与经济政策研究中心,2015.
    [29]ARABI M,GOVINDARAJU R S,HANTUSH M M.Cost-effective allocation of watershed management practices using a genetic algorithm[J].Water Resources Research,2006,42(10):2405-2411.
    [30]ARABI M,FRANKENBERGER J R,ENGEL B A,et al.Representation of agricultural conservation practices with SWAT[J].Hydrological Processes,2007,22(16):3042-3055.
    [31]XIA T L,ZHANG S H.An improved non-dominated sorting genetic algorithm for multi-objective optimization based on crowding distance,in computational intelligence,networked systems and their Applications[M].Berlin Heidelberg:Springer,2014:66-76.
    [32]耿润哲,殷培红,原庆丹.红枫湖流域非点源污染控制区划[J].农业工程学报,2016(19):219-225.GENG Runzhe,YIN Peihong,Yuan Qingdan.Zonation for nonpoint source pollution control in Hongfenghu reservoir watershed[J].Transactions of the Chinese Society of Agricultural Engineering,2016(19):219-225.
    [33]陈磊.非点源污染多级优先控制区构建与最佳管理措施优选[D].北京:北京师范大学,2013:11-20.
    [34]王西平.区域水环境经济系统DSS的设计[J].地理研究,2001(3):266-273.WANG Xiping.Design of decision support system for regional water environment-economic system[J].Geographical Research,2001(3):266-273.
    [35]MARINGANTI C,CHAUBEY I,POPP J.Development of a multiobjective optimization tool for the selection and placement of best management practices for nonpoint source pollution control[J].Water Resources Research,2009,45(6):51-53.
    [36]王晓燕,张雅帆,欧洋,等.流域非点源污染控制管理措施的成本效益评价与优选[J].生态环境学报,2009,18(2):540-548.WANG Xiaoyan,ZHANG Yafan,OU Yang,et al.Optimization and economic evaluation on cost-benefit of Best Management Practices in nonpoint source pollution control[J].Ecology and Environmental Sciences,2009,18(2):540-548.
    [37]TUROIN N,BONTEMS P,ROTILLON G,et al.Agri BMPWater:systems approach to environmentally acceptable farming[J].Environmental Modelling&Software,2005,20(2):187-196.
    [38]许月卿,蔡运龙.土壤侵蚀经济损失分析及价值估算:以贵州省猫跳河流域为例[J].长江流域资源与环境,2006,15(4):470-474.XU Yueqing,CAI Yunlong.Economic loss analysis on soil erosion and estimation of its calues:a case study of Maotiaohe basin,Guizhou Province[J].Resources and Environment in the Yangtze Basin,2006,15(4):470-474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700