凹凸前缘叶片气动性能与绕流流场数值研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Study on Aerodynamic Characteristics and Flow Fields of Airfoil with Wavy Leading Edge
  • 作者:孙贵洋 ; 陈二云 ; 杨爱玲
  • 英文作者:SUN Gui-yang;CHEN Er-yun;YANG Ai-ling;School of Energy and Power Engineering,University of Shanghai for Science and Technology;
  • 关键词:正弦波形 ; 气动性能 ; 反向涡对 ; 分离点
  • 英文关键词:sine wave;;aerodynamic performance;;opposite vortex pair;;separation point
  • 中文刊名:RNWS
  • 英文刊名:Journal of Engineering for Thermal Energy and Power
  • 机构:上海理工大学能源与动力工程学院;
  • 出版日期:2019-04-15 14:22
  • 出版单位:热能动力工程
  • 年:2019
  • 期:v.34;No.221
  • 基金:国家自然科学基金(51106099,50976072);; 上海市科委科研计划项目(13DZ2260900)~~
  • 语种:中文;
  • 页:RNWS201904028
  • 页数:8
  • CN:04
  • ISSN:23-1176/TK
  • 分类号:135-142
摘要
以NACA0018翼型为原始模型进行前缘结构设计,采用计算流体动力学(CFD)方法分析凹凸前缘结构参数对叶片绕流流动及气动性能的影响。结果表明:在0°~10°攻角范围内,凹凸前缘叶片气动性能与原始叶片基本一致,但在15°~25°攻角范围内,正弦波形凹凸前缘叶片升力系数最大提升20.2%;叠加波形凹凸前缘叶片在15°~25°攻角内,气动性能均有不同程度的下降,波峰处推迟分离,而在波谷分离提前,在吸力面每个波谷顺流方向叶片及展向形成反向涡对,相互卷吸并与主流掺混增加能量交换向尾缘处移动,改变了叶片原始流场反馈回路,阻碍了叶片展向涡及流向涡的发展。
        with NACA0018 airfoil as the original model,the influence of the structural parameters of the wavy leading edge on the flow and aerodynamic performance of the leaves is analyzed with CFD(Computational Fluid Dynamics) method.The results show that the aerodynamic performance of the wavy front airfoil is essentially the same as that of the original airfoil with the angle of attack in the range of 0°~10°.With the angle of attack within the range of 15°~25°,however,the coefficient of lift of the sinusoidal wavy leading edge airfoil increases by a maximum of 20.2%,while the superimposed waveforms of the leading and trailing vanes have a decrease in aerodynamic performance.It is found that the separation is postponed at the peak,and the wave separation is advanced.The opposite vortex pair is formed in the direction of the downstream direction of each wave trough of the suction surface,and they are rolled and mixed with the main flow,increasing the energy exchange to the trailing edge.The feedback loop of the original flow field of the airfoil hinders the development of the spanwise vortex and the flow vortex.
引文
[1] JURASZ C M,JURASZ V P.Feeding modes of the humpback whale,Megaptera novaeangliae,in southeast Alaska.[J].Scientific Reports of the Whales Research Institute,1979,87(3):e88-e88.
    [2] FISH F E,BATTLE J M.Hydrodynamic design of humpback whale flipper[J].Journal of Morphology,1995,225(1):51-60.
    [3] MIKLOSOVIC D,MURRAY M.,HOWE L,et al.Leading-edge tubercles delay stall on humpback whale(Megaptera novaeangliae) flippers[J].Physics of Fluids,2004,16(5):L39-L42.
    [4] JOHARI H,HENOCH C W,CUSTODIO D,et al.Effects of Leading-Edge Protuberances on Airfoil Performance[J].AIAA Journal,2007,45(11):2634-2642.
    [5] CHO B C B.The effect of biologically-inspired,passive,leading-edge tubecles on static and wing flight[D].Cananda:University of Toronto,2007.
    [6] PEDRO H T C,KOBAYASHI M H.Numerical study of stall delay on humpback whale flippers[A].Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit,2008-0584,2008.
    [7] 王国付,张明明,徐建中.仿鲸鱼鳍翼段气动控制实验研究[J].工程热物理学报,2013,4(10):1842-1846.WANG Guo-fu,ZHANG Ming-ming,XU Jian-zhong.Experimental study on bionic wavy edge aerodynamic characteristics of airfoil[J].Journal of Engineering Thermophysics,2013,34(10):1842-1846.
    [8] 王晶.薄翼型叶片仿生流动控制降噪及其应用研究[D].吉林:吉林大学,2017.WANG Jing.Study on biomimetic flow control for noise reduction of thin airfoil blade and its application[D].Jilin:Jilin University,2017.
    [9] GUO H,FENG Y,WANG H,et al.Effects of T-S wave amplitude on the control of boundary layer transition by streaks[J].Theoretical and Applied Mechanics Letters,2013,3(4):042005.
    [10] CHONG T P,JOSEPH P F,KINGAN M J.An investigation of airfoil tonal noise at different Reynolds numbers and angles of attack[J].Applied Acoustics,2013,74(1):38-48.
    [11] JIANG Min,LI Xiao-dong,BAI Bao-hong,et al.Numerical simulation on the NACA0018 airfoil self-noise generation[J].Theoretical and Applied Mechanics Letters,2012,2(5):052004-052007.
    [12] 赖建生,马兴灶,方壮东.基于SST k-ω湍流模型的液力缓速器仿真计算与试验验证[J].机床与液压,2017,45(15):155-160.LAI Jian-sheng,MA Xing-zao,FANG Zhuang-dong.Simulation calculation and test verification of hydraulic retarder based on turbulence model of SST k-ω[J].Machine Tool & Hydraulics,2017,45(15):155-160.
    [13] 张德胜,吴苏青,施卫东,等.不同湍流模型在轴流泵叶顶泄漏涡模拟中的应用与验证[J].农业工程学报,2013(13):46-53.ZHANG De-sheng,WU Su-qing,SHI Wei-dong,et al.Application and experiment of different turbulence models for simulating tip leakage vortex in axial flow pump[J].Transactions of the Chinese Society of Agricultural Engineering,2013(13):46-53.
    [14] 杨景茹,杨爱玲,陈二云,等.锯齿尾缘叶片气动特性和绕流流场的数值研究[J].航空动力学报,2017,32(4):900-908.YANG Jing-ru,YANG Ai-ling,CHEN Er-yun,et al.Numerical research on aerodynamic characteristics and flow fields of airfoil with serrated trailing edge[J].Journal of Aerospace Power.2017,32(4):900-908.
    [15] HU Y ,PAN C ,WANG J J .Vortex structure for flow over a heaving cylinder with a flexible tail[J].Experiments in Fluids,2014,55(2):1682.
    [16] 张惠,赵宗德,周广鑫,等.涡流发生器对风力机翼型气动性能影响的实验研究[J].太阳能学报,2017,38(4):951-958.ZHANG Hui,ZHAO Zong-de,ZHOU Guang-xin,et al.Experimental investigation of vortex generator on aerodynamic performance of wind turbine airfoil[J].Acta Energiae Solaris Sinica,2017,38(4):951-958.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700