Effects of adaptation to handling on the circadian rhythmicity of blood solutes in Mongolian gerbils
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of adaptation to handling on the circadian rhythmicity of blood solutes in Mongolian gerbils
  • 作者:Xingchen ; Liu ; Xiang ; Zheng ; Yihan ; Liu ; Xiaoyan ; Du ; Zhenwen ; Chen
  • 英文作者:Xingchen Liu;Xiang Zheng;Yihan Liu;Xiaoyan Du;Zhenwen Chen;School of Basic Medical Science, Capital Medical University;Department of Laboratory Animal, Capital Medical University;
  • 英文关键词:circadian rhythmicity;;diurnal animals;;handling adaptation;;Mongolian gerbils;;physiological parameters;;stress
  • 中文刊名:AMEM
  • 英文刊名:动物模型与实验医学(英文)
  • 机构:School of Basic Medical Science, Capital Medical University;Department of Laboratory Animal, Capital Medical University;
  • 出版日期:2019-06-15
  • 出版单位:Animal Models and Experimental Medicine
  • 年:2019
  • 期:v.2
  • 基金:National Natural Science Foundation of China,Grant/Award Number:No.31572341
  • 语种:英文;
  • 页:AMEM201902010
  • 页数:5
  • CN:02
  • ISSN:10-1546/R
  • 分类号:64-68
摘要
The Mongolian gerbil has been widely used in many research fields and has been re-ported to be a diurnal laboratory animal. The circadian rhythmicity of these gerbils was investigated in the present study by measuring two hormones that show daily oscillations, cortisol and ACTH, in serum using ELISA kits. The levels of the two hor-mones were highest at 8:00 am and their rhythmic changes were similar to those in humans. In addition, the influence of stress of handling and blood collection on the physiological parameters of the gerbils was examined. After adaptation to handling for 1 week, some serum parameters in the animals changed. Handling and blood col-lection did not impact significantly on the following parameters: creatine kinase(CK),lactate dehydrogenase(LD), alanine aminotransferase(ALT), aspartate transaminase(AST), blood urea nitrogen(BUN), and albumin(ALB). However, blood glucose(GLU),total protein(TP) and globulin(GLB) significantly increased while creatinine(CRE) and albumin/globulin(A/G) significantly decreased after adaptation. This work further confirms that the Mongolian gerbil is a diurnal animal and also indicates that a suit-able adaptation procedure is necessary for getting reliable results when performing experiments using these animals.
        The Mongolian gerbil has been widely used in many research fields and has been re-ported to be a diurnal laboratory animal. The circadian rhythmicity of these gerbils was investigated in the present study by measuring two hormones that show daily oscillations, cortisol and ACTH, in serum using ELISA kits. The levels of the two hor-mones were highest at 8:00 am and their rhythmic changes were similar to those in humans. In addition, the influence of stress of handling and blood collection on the physiological parameters of the gerbils was examined. After adaptation to handling for 1 week, some serum parameters in the animals changed. Handling and blood col-lection did not impact significantly on the following parameters: creatine kinase(CK),lactate dehydrogenase(LD), alanine aminotransferase(ALT), aspartate transaminase(AST), blood urea nitrogen(BUN), and albumin(ALB). However, blood glucose(GLU),total protein(TP) and globulin(GLB) significantly increased while creatinine(CRE) and albumin/globulin(A/G) significantly decreased after adaptation. This work further confirms that the Mongolian gerbil is a diurnal animal and also indicates that a suit-able adaptation procedure is necessary for getting reliable results when performing experiments using these animals.
引文
1.Richards J,Gumz ML.Mechanism of the circadian clock in physiol-ogy.Am J Physiol Regul Integr Comp Physiol.2013;304:R1053-R1064.
    2.Refinetti R.Variability of diurnality in laboratory rodents.J Comp Physiol A Neuroethol Sens Neural Behav Physiol.2006;192:701-714.
    3.Refinetti R,Kenagy GJ.Diurnally active rodents for laboratory re-search.Lab Anim.2018;52:577-587.
    4.Gumz ML.Taking into account circadian rhythm when con-ducting experiments on animals.Am J Physiol Renal Physiol.2016;310:F454-F455.
    5.Stuermer IW,Plotz K,Leybold A,et al.Intraspecific allome-tric comparison of laboratory gerbils with Mongolian gerbils trapped in the wild indicates domestication in Meriones unguiculatus(Milne-Edwards,1867)(Rodentia:Gerbillinae).Zool Anz.2003;242(3):249-266.
    6.Liu LN,Ding SG,Shi YY,Zhang HJ,Zhang J,Zhang C.Helicobacter pylori with high thioredoxin-1 expression promotes stomach car-cinogenesis in Mongolian gerbils.Clin Res Hepatol Gas.2016;40:480-486.
    7.Conchedda M,Gabriele F,Bortoletti G.Development and sexual maturation of Echinococcus granulosus adult worms in the alterna-tive definitive host,Mongolian gerbil(Meriones unguiculatus).Acta Trop.2006;97:119-125.
    8.Laming PR,Elwood RW,Best PM.Epileptic tendencies in relation to behavioral responses to a novel environment in the Mongolian gerbil.Behav Neural Biol.1989;51:92-101.
    9.Maftoon N,Funnell WR,Daniel SJ,Decraemer WF.Finite-element modelling of the response of the gerbil middle ear to sound.J Assoc Res Otolaryngol.2015;16:547-567.
    10.Baker AG,Emerson VF.Grating acuity of the Mongolian gerbil(Meriones unguiculatus).Behav Brain Res.1983;8:195-209.
    11.Lau BW,Ren C,Yang J,et al.Light deprivation induces depression-like behavior and suppresses neurogenesis in diurnal mongolian gerbil(Meriones unguiculatus).Cell Transplant.2011;20:871-881.
    12.Yang S,Luo X,Xiong G,So KF,Yang H,Xu Y.The electroretinogram of Mongolian gerbil(Meriones unguiculatus):comparison to mouse.Neurosci Lett.2015;589:7-12.
    13.Simons SS,Beijers R,Cillessen AH,de Weerth C.Development of the cortisol circadian rhythm in the light of stress early in life.Psychoneuroendocrinology.2015;62:292-300.
    14.Llansola M,Ahabrach H,Errami M,Cabrera-Pastor A,Addaoudi K,Felipo V.Impaired release of corticosterone from adrenals con-tributes to impairment of circadian rhythms of activity in hyperam-monemic rats.Arch Biochem Biophys.2013;536:164-170.
    15.Haffen E.Measuring circadian rhythm.Encephale.2009;35(Suppl2):S63-S67.
    16.van Ruiven R,Meijer GW,Wiersma A,Baumans V,van Zutphen LF,Ritskes-Hoitinga J.The influence of transportation stress on selected nutritional parameters to establish the necessary minimum period for adaptation in rat feeding studies.Lab Anim.1998;32:446-456.
    17.Gaskill BN,Garner JP.Stressed out:providing laboratory animals with behavioral control to reduce the physiological effects of stress.Lab Anim(NY).2017;46:142-145.
    18.Obernier JA,Baldwin RL.Establishing an appropriate period of ac-climatization following transportation of laboratory animals.ILAR J.2006;47:364-369.
    19.Mogil JS.Laboratory environmental factors and pain behavior:the relevance of unknown unknowns to reproducibility and translation.Lab Anim(NY).2017;46:136-141.
    20.Schapiro SJ,Lambeth SP,Jacobsen KR,Williams LE,Nehete BN,Nehete PN.Physiological and welfare consequences of transport,relocation,and acclimatization of chimpanzees(Pan troglodytes).Appl Anim Behav Sci.2012;137:183-193.
    21.Kim CY,Han JS,Suzuki T,Han SS.Indirect indicator of transport stress in hematological values in newly acquired cynomolgus mon-keys.J Med Primatol.2005;34:188-192.
    22.Conour LA,Murray KA,Brown MJ.Preparation of animals for research-issues to consider for rodents and rabbits.ILAR J.2006;47:283-293.
    23.Bass J,Takahashi JS.Circadian integration of metabolism and ener-getics.Science.2010;330:1349-1354.
    24.Challet E.Circadian clocks,food intake,and metabolism.Prog Mol Biol Transl Sci.2013;119:105-135.
    25.Qian J,Scheer FAJL.Circadian system and glucose metabolism:implications for physiology and disease.Trends Endocrinol Metab.2016;27:282-293.
    26.Takeda N,Maemura K.The role of clock genes and circadian rhythm in the development of cardiovascular diseases.Cell Mol Life Sci.2015;72:3225-3234.
    27.Bilu C,Einat H,Kronfeld-Schor N.Utilization of diurnal rodents in the research of depression.Drug Dev Res.2016;77:336-345.
    28.Gianoulakis C,Dai X,Thavundayil J,Brown T.Levels and circa-dian rhythmicity of plasma ACTH,cortisol,and beta-endorphin as a function of family history of alcoholism.Psychopharmacology.2005;181:437-444.
    29.Ochi T,Yamada A,Naganuma Y,Nishina N,Koyama H.Effect of road transportation on the serum biochemical parameters of cynomolgus monkeys and beagle dogs.J Vet Med Sci.2016;78:889-893.
    30.Meeusen JW,Lieske JC.Looking for a better creatinine.Clin Chem.2014;60:1036-1039.
    31.Mathialagan S,Rodrigues AD,Feng B.Evaluation of renal trans-porter inhibition using creatinine as a substrate in vitro to as-sess the clinical risk of elevated serum creatinine.J Pharm Sci.2017;106:2535-2541.
    32.Al-Joudi FS,Wahab NA.The utilization of an index for serum glob-ulin compensation in diseases associated with decreased serum al-bumin.Med J Malaysia.2004;59:495-501.
    33.Samanta S,Sharma A,Das B,Mallick AK,Kumar A.Significance of total protein,albumin,globulin,serum effusion albumin gradient and LDH in the differential diagnosis of pleural effusion secondary to tuberculosis and cancer.J Clin Diagn Res.2016;10:BC14-BC18.
    34.Bazwinsky-Wutschke I,Bieseke L,Mühlbauer E,Peschke E.Influence of melatonin receptor signalling on parameters involved in blood glucose regulation.J Pineal Res.2014;56:82-96.
    35.G?rtner K,Büttner D,D?hler K,Friedel R,Lindena J,Trautschold I.Stress response of rats to handling and experimental procedures.Lab Anim.1980;14:267-274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700