个性化3D打印多孔钛合金加强块重建重度髋臼骨缺损的生物相容性和生物力学研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biocompatibility and biomechanics of individualized 3D printed porous Ti6Al4V augment for acetabular bone defect in pig
  • 作者:付君 ; 倪明 ; 陈继营 ; 邓涛 ; 管海涛 ; 贾承奇 ; 徐驰 ; 柴伟 ; 郝立波
  • 英文作者:FU Jun;NI Ming;CHEN Ji-ying;DENG Tao;GUAN Hai-tao;JIA Cheng-qi;XU Chi;CHAI Wei;HAO Li-bo;General Hospital of PLA;
  • 关键词:髋臼骨缺损 ; 钛合金 ; 生物力学 ; 生物相容性
  • 英文关键词:acetabular bone defect;;titanium alloy;;biomechanics;;biocompatibility
  • 中文刊名:ZJXS
  • 英文刊名:Orthopedic Journal of China
  • 机构:解放军总医院骨科;
  • 出版日期:2018-05-20
  • 出版单位:中国矫形外科杂志
  • 年:2018
  • 期:v.26;No.444
  • 基金:国家高技术研究发展计划(863计划)项目[编号:2015AA033501]
  • 语种:中文;
  • 页:ZJXS201810021
  • 页数:6
  • CN:10
  • ISSN:37-1247/R
  • 分类号:87-92
摘要
[目的]评价巴马小型猪髋臼骨缺损模型个性化3D打印多孔钛合金加强块多孔内骨长入情况和生物力学性能。[方法]在巴马小型猪建立髋臼缺损模型,制备个性化3D打印多孔钛合金加强块置于缺损处。扫描电子显微镜测量多孔钛合金加强块多孔涂层内部结构参数(孔隙率、孔径和梁径),CT扫描三维重建测量个性化加强块置入术后的匹配率;力学试验机测量加强块的刚度、抗压强度和弹性模量以及加强块置入术后的生物力学;Micro-CT检查评价加强块多孔涂层内的骨长入和骨整合。[结果]钛合金加强块内部结构参数,总孔隙率为(55.48±0.61)%,孔径(319.23±25.05)μm,梁径(240.10±23.50)μm;力学性能参数:刚度为(21 464.60±1 091.69)N/mm,抗压强度为(231.10±11.77)MPa,弹性模量为(5.35±0.23)GPa。加强块置入术后的匹配度为:(91.40±2.83)%。Micro-CT扫描结果显示个性化3D打印多孔钛合金加强块的多孔涂层内有骨小梁长入;个性化3D打印多孔钛合金加强块置入术后即刻和12周最大抗剪切强度载荷值分别为(929.46±295.99)N和(1 521.93±98.38)N(P=0.030)。[结论]本研究中设计的个性化3D打印多孔钛合金加强块具有良好的骨组织生物相容性和生物力学性能。
        [Objective] To evaluate bone ingrowth and biomechanics individualized 3D printed porous Ti6Al4V augment implant for acetabular bone defect in Ba-Ma mini pigs.[Methods]As an acetabular bone defect model created in Ba-Ma mini pigs,an augment implant made by 3D print technique for the acetabular bone defect individually was implanted to repair the defect.The inner structural parameters of 3D printed porous Ti6Al4V augment were measured by scanning electron microscope(SEM),including porosity,pore size and trabecular diameter.The matching extent between the postoperative augment and the designed augment was measured by CT scanning and 3D reconstruction.In addition,biomechanical characteristics,such as stiffness,compressive strength,elastic modulus,of 3D printed porous Ti6Al4V augment were measured by mechanical testing machine.Moreover,the bone ingrowth and implant osseointegration were evaluated by micro-CT assay.[Results]In term of the inner structural parameters of the 3D printed porous Ti6Al4V augment,the porosity was of(55.48±0.61)%,pore size of(319.23±25.05)μm and trabecular diameter of(240.10±23.50)μm.Additionally,the biomechanical features of the printed augment proved stiffness of(21 464.60±1 091.69)N/mm,compressive strength of(231.10±11.77)MPa and elastic modulus of(5.35±0.23)GPa,respectively.Furthermore,the matching extent between the postoperative augment and the designed one reached(91.40±2.83)%.The image of Micro-CT shows the vigorous bone growth into coating pores of the 3D printed augment.Besides,the maximal shear strength of 3D printed augment was(929.46±295.99)N implanted immediately,whereas(1 521.93±98.38)N at 12 weeks after surgery,with a significant difference between the two time points(P=0.030).[Conclusions]The 3D printed porous Ti6Al4V augment designed in this current study does have good biocompatibility to bone tissue and proper biomechanical features.
引文
[1]Albrektsson T,Branemark PI,Hansson HA,et al.Osseointegrated titanium implants.Requirements for ensuring a long-lasting,direct bone-to-implant anchorage in man[J].Acta Orthop Scand,1981,52(1):155-170.
    [2]Wen CE,Yamada Y,Hodgson PD.Fabrication of novel metal alloy foams for biomedical applications[J].Mater Forum,2005,29(3):274-277.
    [3]Parthasarathy J,Starly B,Raman S.A design for additive manufacture of functionality graded porous structures with tailored mechanical properties for biomedical applications[J].J Manuf Process,2011,13(2):160-170.
    [4]Kopperdahl DL,Morgan EF,Keavney TM.Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone[J].J Orthop Res,2002,20:801-805.
    [5]Geetha M,Singh AK,Asokamani R,et al.Ti based biomaterials,the ultimate choice for orthopaedic implants-a review[J].Prog Mater Sci,2009,54:397-425.
    [6]Niinomi M,Nakai M,Hieda J.Development of new metallic alloys for biomedical applications[J].Acta Biomater,2012,8(11):3888-3903.
    [7]Elmay W,Prima F,Gloriant T,et al.Effects of thermomechanical process on the microstructure and mechanical properties of a fully martensitic titanium-based biomedical alloy[J].J Mech Behav Biomed Mater,2013,18(1):47-56.
    [8]Levine B.A new era in porous metals:applications in orthopaedics[J].Adv Eng Mater,2008,10:788-792.
    [9]Palmquist A,Snis A,Emanuelsson L,et al.Long-term biocompatibility and osseointegration of electron beam melted,free-form-fabricated solid and porous titanium alloy:experimental studies in sheep[J].J Biomater,2013,27(8):1003-1016.
    [10]Li X,Feng YF,Wang CT,et al.Evaluation of biological properties of electron beam melted Ti6Al4V implant with biomimetic coating in vitro and in vivo[J].Plos one,2012,7(12):e52049.
    [11]Sargeant TD,Guler MO,Oppenheimer SM,et al.Hybrid bone implants:self-assembly of peptide amphiphilenanofibers within porous titanium[J].Biomaterials,2008,29(2):161-171.
    [12]Barbas A,Bonnet AS,Lipinski P,et al.Development and mechanical characterization of porous titanium bone substitutes[J].J Mech Behav Biomed Mater,2012,9(1):34-44.
    [13]Otsuki B,Takemoto M,Fujibayashi S,et al.Pore throat size and connectivity determine bone and tissue ingrowth into porous implants:three-dimensional micro-CT based structural analyses of porous bioactive titanium implants[J].Biomaterials,2006,27(35):5892-5900.
    [14]Karageorgiou V,Kaplan D.Porosity of 3D biomaterial scaffolds and osteogenesis[J].Biomaterials,2005,26(27):5474-5491.
    [15]Wieding J,Wolf A,Bader R.Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone[J].J Mech Behav Biomed Mater,2014,37(1):56-68.
    [16]Schumacher M,Deisinger U,Detsch R,et al.Indirect rapid prototyping of biphasic calcium phosphate scaffolds as bone substitutes:influence of phase composition,macroporosity and pore geometry on mechanical properties[J].J Mater Sci Mater Med,2010,21(12):3119-3127.
    [17]Parthasarathy J,Starly B,Raman S,et al.Mechanical evaluation of porous titanium(Ti6Al4V)structures with electron beam melting(EBM)[J].J Mech Behav Biomed Mater,2010,3(3):249-259.
    [18]Warnke PH,Douglas T,Wollny P,et al.Rapid prototyping:porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering[J].Tissue Eng Part C Methods,2009,15(2):115-124.
    [19]Hollander DA,von Walter M,Wirtz T,et al.Structural,mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming[J].Biomaterials,2006,27(7):955-963.
    [20]Kapat K,Srivas PK,Rameshbabu AP,et al.Influence of porosity and pore-size distribution in Ti6Al4 V foam on physicomechanical properties,osteogenesis,and quantitative validation of bone ingrowth by micro-computed tomography[J].ACS Appl Mater Interfaces,2017,9(45):39235-39248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700