InSb薄膜热导率温度特性及传热机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temperature dependent thermal conductivity of InSb thin film and heat transfer mechanism
  • 作者:黄正兴 ; 孙豪 ; 李奇松 ; 管相宇
  • 英文作者:HUANG Zhengxing;SUN Hao;LI Qisong;GUAN Xiangyu;Faculty of Electronic Information and Electrical Engineering,Dalian University of Technology;Key Laboratory of Liaoning for Integrated Circuits Technology;Laboratory for High Density Optical Storage,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences;
  • 关键词:InSb薄膜 ; 晶态和非晶态 ; 热导率 ; 温度特性
  • 英文关键词:InSb thin film;;crystalline and amorphous;;thermal conductivity;;temperature dependent characteristic
  • 中文刊名:DLLG
  • 英文刊名:Journal of Dalian University of Technology
  • 机构:大连理工大学电子信息与电气工程学部;辽宁省集成电路技术重点实验室;中国科学院上海光学精密机械研究所高密度光存储实验室;
  • 出版日期:2018-09-20 17:05
  • 出版单位:大连理工大学学报
  • 年:2018
  • 期:v.58
  • 基金:国家自然科学基金资助项目(61131004);; 辽宁省自然科学基金资助项目(201602153)
  • 语种:中文;
  • 页:DLLG201805012
  • 页数:7
  • CN:05
  • ISSN:21-1117/N
  • 分类号:82-88
摘要
InSb薄膜广泛应用于高精度的光电存储、红外探测和红外热成像技术以及超分辨掩膜层技术中.热导率及其温度特性是影响薄膜实际应用的关键因素.采用瞬态热反射方法测试了厚度为70~200nm的InSb薄膜在非晶态和晶态下热导率,并探讨了其中的传热机理.对于晶态InSb薄膜,热导率为(0.55±0.055)W/(m·K),并且随温度的变化不明显;而非晶态InSb薄膜在温度450K以下时热导率为(0.37±0.037)W/(m·K).当温度在450K以上时,由于薄膜从非晶态转化为晶态,其热导率经历了一个突然的升高过程.无论是晶态还是非晶态薄膜样品,热导率与薄膜厚度都没有明显依赖关系.研究结果可以为InSb薄膜的实际应用提供有益的参考.
        The InSb thin film is widely used in high precision photoelectric storage,infrared detection,infrared thermal imaging technology and super resolution layer mask technology.Thermal conductivity and its temperature dependent characteristic are the key factors for the film application.The thermal conductivity of InSb thin film under amorphous and crystalline states with thickness of70-200 nm is tested based on the transient thermal reflection method.And the heat transport mechanism is discussed.For crystalline InSb thin film,its thermal conductivity is(0.55±0.055)W/(m·K),and the value is hardly changed with the change of temperature;and for amorphous InSb thin film,its thermal conductivity is(0.37±0.037)W/(m·K)when the temperature is below450 K.While when the temperature is above 450 K,due to the changes from amorphous into crystalline,the thermal conductivity has experienced a sudden rise.Neither crystalline nor amorphous thin film samples,their thermal conductivities change with the change of the sample thickness.This work can provide a beneficial reference for the practical application of InSb thin film.
引文
[1]OHTA T,NISHIUCHI K,NARUMI K,et al.Overview and the future of phase-change optical disk technology[J].Japanese Journal of Applied Physics,2000,39(1):770-774.
    [2]WANG W J,SHI L P,ZHAO R,et al.Fastphase transitions induced by picosecond electrical pulses on phase change memory cells[J].Applied Physics Letters,2008,93:043121.
    [3]LENCER D,SALINGA M,WUTTIG M.Design rules for phase-change materials in data storage applications[J].Advanced Materials,2011,23(18):2030-2058.
    [4]WEI Jingsong,ZHANG Kui,WEI Tao,et al.High-speed maskless nanolithography with visible light based on photothermal localization[J].Scientific Reports,2017,7:43892.
    [5]LI Jianzheng,ZHENG Lirong,XI Hongzhu,et al.A study on inorganic phase-change resist Ge2Sb2(1-x)Bi2xTe5and its mechanism[J].Physical Chemistry Chemical Physics,2014,16(40):22281-22286.
    [6]EILERT S,LEINWANDER M,CRISENZA G.Phase change memory:a new memory enables new memory usage models[C]//2009 IEEE International Memory Workshop.Piscataway:IEEE,2009:10730731.
    [7]TIAN Ximin,LI Zhiyuan.Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials[J].Photonics Research,2016,4(4):146-152.
    [8]WEI Tao,WEI Jingsong,ZHANG Kui,et al.Image lithography in telluride suboxide thin film through controlling″virtual″bandgap[J].Photonics Research,2017,5(1):22-26.
    [9]WANG Qian,ROGERS E T F,GHOLIPOUR B,et al.Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J].Nature Photonics,2016,10(1):60-65.
    [10]IOVU M,COLOMEICO E,BENEA V,et al.Characterization of Ge-Sb-Te phase-change memory materials[C]//Advanced Topics in Optoelectronics,Microelectronics,and Nanotechnologies 2012.Constanta:The Society of Photo-Optical Instrumentation Engineers(SPIE),2012:841103.
    [11]DERINGER V L,DRONSKOWSKI R.DFT studies of pristine hexagonal Ge1Sb2Te4(0001),Ge2Sb2Te5(0001),and Ge1Sb4Te7(0001)surfaces[J].Journal of Physical Chemistry C,2013,117(29):15075-15089.
    [12]ZHANG Xinghao,WEI Jingsong.Direct detection of the transient superresolution effect of nonlinear saturation absorption thin films[J].Photonics Research,2015,3(4):100-105.
    [13]WEI Tao,WEI Jingsong,ZHANG Kui,et al.Grayscale image recording on Ge2Sb2Te5thin films through laser-induced structural evolution[J].Scientific Reports,2017,7:42712.
    [14]蔡晓林.InSb薄膜的光学热学特性研究[D].上海:中国科学院上海光学精密机械研究所,2013.CAI Xiaolin.Optical and thermal characteristics of InSb semiconductor thin films[D].Shanghai:Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,2013.(in Chinese)
    [15]HROSTOWSKI H J,MORIN F J,GEBALLE T H,et al.Hall effect and conductivity of InSb[J].Physical Review,1955,100(6):1672-1676.
    [16]HOLLIS J E L,CHOO S C,HEASELL E L.Recombination centers in InSb[J].Journal of Applied Physics,1967,38(4):1626-1636.
    [17]ORR J M S,BUCKLE P D,FEARN M,et al.Low temperature impact ionization in indium antimonide high performance quantum well field effect transistors[J].Journal of Applied Physics,2006,99(8):083703.
    [18]ORR J M S,BUCKLE P D,FEARN M,et al.Schottky barrier transport in InSb/AlInSb quantum well field effect transistor structures[J].Semiconductor Science and Technology,2006,21(10):1408-1411.
    [19]CAI Xiaolin,WEI Jingsong.Temperature dependence of the thermal properties of InSb materials used in data storage[J].Journal of Applied Physics,2013,114(8):2078-2086.
    [20]NAKAI K,OHMAKI M,TAKESHITA N,et al.First playback of high-definition video contents from super-resolution near-field structure optical disc[J].Japanese Journal of Applied Physics,2010,49(8):08KE02.
    [21]HYOT B,OLIVIER S,ARMAND M F,et al.High capacity SuperRENS-ROM disc with InSb active layer[C]//Proceedings of E\PCOS 2009.Aachen:European Phase Change and Ovonic Symposium,2009.
    [22]HYOT B,BIQUARD X,LAULAGNET F.Superresolution ROM disc with a semi-conductive InSb active layer[C]//Proceedings of E\PCOS 2007.Zermatt:European Phase Change and Ovonic Symposium,2007.
    [23]BHANDARI C M,VERMA G S.Role of longitudinal and transverse phonons in lattice thermal conductivity of GaAs and InSb[J].Physical Review,1968,176(3):1112.
    [24]BAI Suyuan,TANG Zhenan,HUANG Zhengxing,et al.Thermal characterization of Si3N4thin films using transient thermoreflectance technique[J].IEEE Transactions on Industrial Electronics,2009,56(8):3238-3243.
    [25]KADING O W,SKURK H,GOODSON K E.Thermal conduction in metallized silicon-dioxide layers on silicon[J].Applied Physics Letters,1994,65(13):1629-1631.
    [26]UJIHARA K.Reflectivity of metals at high temperatures[J].Journal of Applied Physics,1972,43(5):2376-2383.
    [27]MAN K F,TANG K S,KWONG S.Genetic algorithms:concepts and applications in engineering design[J].IEEE Transactions on Industrial Electronics,1996,43(5):519-534.
    [28]王小平,曹立明.遗传算法——理论、应用与软件实现[M].西安:西安交通大学出版社,2002.WANG Xiaoping,CAO Liming.Genetic Algorithm:Theory,Application and Software Implementation[M].Xi′an:Xi′an Jiaotong University Press Co.,LTD,2002.(in Chinese)
    [29]STEHFEST H.Remark on algorithm 368:Numerical inversion of Laplace transforms[J].Communications of the ACM,1970,13(10):624.
    [30]STEHFEST H.Algorithm 368:Numerical inversion of Laplace transforms[D5][J].Communications of the ACM,1970,13(1):47-49.
    [31]TRITT T M.Thermal Conductivity:Theory,Properties and Applications[M].New York:Springer,2004.
    [32]KITTEL C.Introduction to solid state physics(A.Klemm)[J].Zeitschrift Naturforschung Teil A,1954,9:372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700