基于差分格式的气动制动系统管路研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis Based on Difference Scheme of Pneumatic Braking System for Pipeline
  • 作者:方桂花 ; 高旭 ; 曾标 ; 胡贤东 ; 王鹤川
  • 英文作者:FANG Gui-hua;GAO Xu;ZENG Biao;HU Xian-dong;WANG He-chuan;Inner Mongolia University of Science and Technology;
  • 关键词:差分格式 ; 精度 ; 管路 ; MATLAB
  • 英文关键词:difference scheme;;accuracy;;pipeline;;MATLAB
  • 中文刊名:YYYQ
  • 英文刊名:Chinese Hydraulics & Pneumatics
  • 机构:内蒙古科技大学机械工程学院;
  • 出版日期:2019-03-15
  • 出版单位:液压与气动
  • 年:2019
  • 期:No.331
  • 基金:国家重点研发计划项目(2017 YFF0207203);; 内蒙古自然科学基金(2016MS0545);; 内蒙自治区科技创新引导奖励资金(KCBJ2018031);内蒙自治区科技创新引导奖励资金(2017CXYD-2)
  • 语种:中文;
  • 页:YYYQ201903011
  • 页数:7
  • CN:03
  • ISSN:11-2059/TH
  • 分类号:57-63
摘要
通过采用一阶迎风差分格式、中心差分格式和二阶Lax-Wendroff格式对气动制动系统(PBS)中管路部分进行精度分析。根据气体连续方程、运动方程和能量守恒式,在时间和空间上划分差分网格建立管路动态模型。为了提高研究精度,在建立管路动态模型的过程中涉及了管路的热交换和可压缩性等因素,运用MATLAB软件对气体的双曲型偏微分方程进行数值计算,并且由虚拟管路小孔模型作为管路动态模型数值计算的边界条件。通过分析3种格式下管路中的状态变量与时间的关系,选择精度较高稳定性较强的差分格式,对车辆气动制动系统的管路部分的设计和研究具有指导意义。
        Through use of the first order accuracy upwind difference scheme, the central difference scheme and the second order accuracy Lax-Wendroff format, pipeline part of the pneumatic brake system(PBS) is studied. According to the equation of continuous gas, the motion equation and the energy conservation equation, we establish a pipeline dynamic model by meshing a difference grid in time and space. In order to improve precision of the study, heat exchange and compressibility of the pipeline are involved in the process of establishing the dynamic model of the pipeline. The software MATLAB is used to calculate the hyperbolic partial differential equation of the gas, and the boundary condition of the number value of the dynamic model of the pipeline is calculated by the virtual tube hole model. By analyzing the relationship between the state variables and time in the three forms of the pipeline, we choose the difference scheme with higher accuracy and stability, which is of guiding significance for design and research of the pipeline part of vehicle pneumatic brake system.
引文
[1] FUJINO K, TANIGUCHI K, YAMAMOTO N, et al. Transient Pressure and Flow Rate Measurement of Pneumatic Power Supply Line in Shinkansen: Examination of Unsteady Characteristics in Pneumatic Supply System by Experiment [C]. SICE Conference 2010, Proceedings of IEEE, 2010:1664-1669.
    [2] LOPZE A, SHERONOY R, CHIEN S, et al. Analysis of the Braking Behaviour in Pedestrian Automatic Emergency Braking [C]. Las Palmas, Spain, 15-18 September, 2015:1117-1122.
    [3] FLEMING B. Advances in Automotive [J]. IEEE Veh. Technol. Mag, 2015,(10):4-11.
    [4] 周红,刘永寿,岳珠峰.输流管道压力脉动计算分析[J].机械科学与技术,2011,30(9):1435-1438. ZHOU Hong, LIU Yongshou, YUE Zhufeng. Calculation and Analysis of Pressure Pulsation in Pipeline [J]. Mechanical Science and Technology for Aerospace Engineering, 2011,30(9):1435-1438.
    [5] 魏伟,杜念博.重载列车制动管路对制动性能的影响[J].交通运输工程学报,2011,11(5):49-54. WEI Wei, DU Nianbo. Influence of Brake Line of Heavy-duty Train on Braking Performance [J]. Journal of Traffic and Transportation Engineering, 2011,11(5):49-54.
    [6] ZIELKI W. Frequency Dependent Friction in Transient Pipe Flow [J]. Trans ASME J Basic Engng, 1968,90(3):414.
    [7] KITAGAWA A, KAGAWA T, TAKENAK T. High Speed and Accurate Computing Method for Transient Response of Pneumatic Transmission Line Using Characteristics Method. Trans [J]. Soc. Instrum, Control Eng.,1984,20:648-653.
    [8] HASHIMOTO K, IMAEDA M, KIKUCHI K. The Analyses of Transient Responses of Fluid Lines by Characteristics Grid Method [J]. Hydraul, Pneum, 1985,(16):140-146.
    [9] 孙则强.柴油机进气道稳流试验研究及气体流动仿真[D].长春:吉林大学,2005. SUN Zeqiang. Experimental Study on Steady Flow of Diesel Engine Inlet and Simulation of Gas Flow [D]. Changchun: Jilin University, 2005.
    [10] HE L, WANG X, ZHANG Y, et al. Modeling and Simu-lation Vehicle Air Brake System [J]. 2013,(F1):21-36.
    [11] 李兴丽,李刚炎,杨凡,等.车辆制动气室动态响应特性的无因次分析[J].液压与气动,2018,(3):44-51. LI Xingli, LI Gangyan, YANG Fan, et al. Dimensionless Analysis of Dynamic Response Characteristics of Vehicle Brake Chamber [J]. Chinese Hydraulics & Pneumatics, 2018,(3):44-51.
    [12] 桑勇,邵利来,王旭东.基于ANSYS大流量管路流固耦合振动分析[J].液压气动与密封,2018,38(7):1-5. SANG Yong, SHAO Lilai, WANG Xudong. Fluid-solid Coupling Vibration Analysis of Large Flow Pipeline Based on ANSYS [J]. Hydraulics Pneumatics & Seals, 2018,38(7):1-5.
    [13] 林振宇,李志伟,安少鹏.基于Fluent的蒸发器喷淋管路数值模拟分析[J].一重技术,2017,(1):13-19. LIN Zhenyu, LI Zhiwei, AN Shaopeng. Numerical Simulation Analysis of Evaporator Spray Pipeline Based on Fluent [J]. CFHI Technology, 2017,(1):13-19.
    [14] 蔡茂林.管路内的气体流动[J].液压气动与密封,2007,(4):51-55. CAI Maolin. Gas Flow in the Pipeline [J]. Hydraulics Pneumatics & Seals, 2007,(4):51-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700