超声速混合层中边频扰动的气动声场
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sound generation by sideband instability in supersonic mixing layer
  • 作者:李云航 ; 方一红 ; 赵磊
  • 英文作者:LI Yunhang;FANG Yihong;ZHAO Lei;Laboratory for High-Speed Aerodynamics,School of Mechanical Engineering,Tianjin University;Hypervelocity Aerodynamics Institute,China Aerodynamics Research and Development Center;
  • 关键词:抛物化稳定性方程 ; 超声速混合层 ; 差频扰动 ; 快模态 ; 慢模态 ; 马赫波辐射
  • 英文关键词:parabolized stability equations(PSE);;supersonic mixing layer;;difference component;;fast mode;;slow mode;;Mach wave radiation
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:天津大学机械工程学院高速空气动力学研究室;中国空气动力研究与发展中心超高速空气动力研究所;
  • 出版日期:2019-05-07
  • 出版单位:航空动力学报
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金重点项目(11332007);国家自然科学基金重大研究计划培育项目(91852110)
  • 语种:中文;
  • 页:HKDI201905011
  • 页数:8
  • CN:05
  • ISSN:11-2297/V
  • 分类号:108-115
摘要
为研究超声速流动下混合层声辐射机理,提高对超声速混合层气动噪声的认识,利用抛物化稳定性方程(PSE)考察一对频率接近失稳扰动的非线性演化,分析近场差频扰动的演化特征,并结合Wu积分理论计算远场声辐射特性。结果表明,超声速混合层中频谱拓宽与差频扰动有关,差频扰动的产生,拓宽了远场马赫波辐射范围,增大了远场马赫波辐射强度。对于快模态扰动,差频扰动频率越小,其增长能力越强,远场马赫波辐射区域越宽;对于慢模态扰动,差频扰动频率大小对其增长能力影响不明显,远场马赫波辐射范围和强度变化不大。
        To reveal the acoustic radiation mechanism of mixing layer under supersonic flow,and enhance the understanding,the parabolized stability equations(PSE)were performed to investigate the sound generation by sideband instability in a supersonic mixing layer.The nonlinear evolution of two initial disturbances and the fluctuation of difference component were analyzed.Mach wave radiation was quantified by an integral derived by Wu,which representd the detail of sound generation mechanism in far field.The results showed that the spectral broadening was due to the excitation of difference component and its sideband interaction.The generation of the difference component broadened the scope and enhanced the strength of Mach wave radiation.For fast mode,the difference component increases more rapidly with its frequency getting smaller,and the scope of Mach wave radiation gets wider in the meantime.However,for slow mode,the influence of frequency of difference component on Mach wave radiation is not obvious.
引文
[1]戈尔茨坦.气动声学[M].北京:国防工业出版社,2014.
    [2]LAWSON S M,CLARK R L,CROUSE R F.Aero-optic performance of supersonic mixing layers[J].Proceeding of the SPIE,1990,1326:190-195.
    [3]BROWN G L,ROSHKO A.On density effects and large structure in turbulent mixing layers[J].Journal of Fluid Mechanics,1974,64(4):775-816.
    [4]WINANT C D,BROWAND F K.Vortex pairing:the mechanism of turbulent mixing-layer growth at moderate Reynolds number[J].Journal of Fluid Mechanics,1974,63(2):237-255.
    [5]TAM C,GOLEBIOWSKI M,SEINER J.On the two components of turbulent mixing noise from supersonic jets[R].AIAA-96-1716,1996.
    [6]TAM C K W,BURTON D E.Sound generated by instability waves of supersonic flows:Part 1two-dimensional mixing layers[J].Journal of Fluid Mechanics,1984,138:249-271.
    [7]SONG G,ALIZARD F,ROBINET J C,et al.Global and Koopman modes analysis of sound generation in mixing layers[J].Physics of Fluids,2013,25(12):124101.1-124101.30.
    [8]MIKSAD R W.Experiments on nonlinear interactions in the transition of a free shear layer[J].Journal of Fluid Mechanics,1973,59(1):1-21.
    [9]SUPONITSKY V,SANDHAM N D,MORFEY C L.Linear and nonlinear mechanisms of sound radiation by instability waves in subsonic jets[J].Journal of Fluid Mechanics,2010,658:509-538.
    [10]HERBERT T.Parabolized stability equations[J].Annual Review of Fluid Mechanics,1997,29(1):245-283.
    [11]CHEUNG L,LELE S.Acoustic radiation from subsonic and supersonic mixing layers with nonlinear PSE[R].AIAA 2004-363,2004.
    [12]CHEUNG L C,LELE S K.Linear and nonlinear processes in two-dimensional mixing layer dynamics and sound radiation[J].Journal of Fluid Mechanics,2009,625:321-351.
    [13]WU X.Mach wave radiation of nonlinearly evolving supersonic instability modes in shear layers[J].Journal of Fluid Mechanics,2005,523:121-159.
    [14]郭娜,方一红.基于扰动方程的超音速轴对称射流马赫波辐射研究[J].计算力学学报,2017,34(2):213-218.GUO Na,FANG Yihong.Studying of mach wave radiation in an axisymmetric supersonic jet using nonlinear disturbance equations[J].Chinese Journal of Computational Mechanics,2017,34(2):213-218.(in Chinese)
    [15]郑美香,方一红,赵磊.低中等雷诺数超声速轴对称射流气动声场[J].航空动力学报,2017,32(12):3013-3021.ZHENG Meixiang,FANG Yihong,ZHAO Lei.Acoustic field of axisymmetric supersonic jet at low and moderate Reynolds number[J].Journal of Aerospace Power,2017,32(12):3013-3021.(in Chinese)
    [16]周恒,苏彩虹,张永明.超声速/高超声速边界层的转捩机理及预测[M].北京:科学出版社,2015.
    [17]ZHAO Lei,ZHANG Cunbo,LIU Jianxin,et al.Improved algorithm for solving nonlinear parabolized stability equations[J].Chinese Physics B,2016,25(8):084701.1-08471.8.
    [18]CHEUNG L C.Aeroacoustic noise prediction and the dynamics of shear layers and jets using the nonlinear parabolized stability equations[D].Stanford:Stanford University,2007.
    [19]JACKSON T L,GROSCH C E.Inviscid spatial stability of a compressible mixing layer[J].Journal of Fluid Mechanics,1989,208:609-637.
    [20]DAY M J.Structure and stability of compressible reacting mixing layers[D].Stanford:Stanford University,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700