基于热加工图6082铝合金锻造工艺优化及强化机制研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Isothermal Forging Process and Strengthening Mechanism of 6082 Aluminum Alloy through Processing Map
  • 作者:王家毅 ; 米振莉 ; 李辉 ; 江海涛 ; 王鹏龙
  • 英文作者:Wang Jiayi;Mi Zhenli;Li Hui;Jiang Haitao;Wang Penglong;Engineering Research Institute,University of Science and Technology Beijing;College of Engineering,Yantai Nanshan University;
  • 关键词:6082铝合金 ; 本构关系 ; 热加工图 ; 位错密度
  • 英文关键词:6082 aluminum alloy;;constitutive equation;;processing map;;dislocation density
  • 中文刊名:ZXJS
  • 英文刊名:Chinese Journal of Rare Metals
  • 机构:北京科技大学工程技术研究院;烟台南山学院工学院;
  • 出版日期:2017-11-26 21:41
  • 出版单位:稀有金属
  • 年:2019
  • 期:v.43;No.275
  • 基金:国家重点研发计划项目(2016YFB0300800);; 山东省重点研发计划项目(2015GGX102021)资助
  • 语种:中文;
  • 页:ZXJS201902001
  • 页数:9
  • CN:02
  • ISSN:11-2111/TF
  • 分类号:4-12
摘要
利用Gleeble-3500热模拟试验机对6082铝合金进行高温压缩试验,研究了在变形温度为300~500℃和应变速率为0.01~10.00 s~(-1)条件下6082铝合金的热变形流变行为。采用Zener-Hollomon参数法构建6082铝合金高温塑性变形的本构关系,验证试验的相关系数和平均相对误差分别为0.992%和3.100%。基于DMM(dynamic materials model)模型构建了不同应变量下6082铝合金的热加工图,合金的安全加工区域主要位于400~500℃, 0.025~1.000 s~(-1),并通过高温塑性变形行为的研究结果,优化了6082铝合金的等温锻造工艺,锻造工艺为:锻造温度450℃,真应变0.4(工程应变33%),应变速率0.200 s~(-1)。通过金象显微镜(OM)、拉伸试验和透射电镜(TEM)分析了该合金变形后的微观组织性能变化及强化机制。研究结果表明:6082铝合金的软化机制主要为动态回复,且固溶时效后析出相的形核及长大与基体中位错密度紧密相关。
        The flow behaviors of 6082 aluminum alloy were investigated using high-temperature isothermal compression test on a Glebble-3500 thermal-mechanical simulator at a deformation temperature of 300~500 ℃ and a strain rate range of 0.01~ 10.00 s~(-1). The constitutive equation for the plastic deformation of 6082 alloy at elevated temperatures was established by introducing Zener-Hollomon parameters. The correlation coefficient and the relative error ratio of verification test were 0.992% and 3.100%, respectively. The processing maps of 6082 aluminum alloy with various true strains were calculated and analyzed according to the dynamic materials model and the optimum processing domain was located at the temperature range of 400~500 ℃ and the true strain rate range of 0.025~1.000 s~(-1). Moreover, based on the processing map, the optimum forging parameters of 6082 aluminum alloy were set as the temperature of 450 ℃, the true strain of 0.4(engineering strain 33%) and the strain rate of 0.200 s~(-1).In addition, the optical microscopy(OM), tensile tests and transmission electron microscopy(TEM) were conducted to analyze the microstructures and mechanical properties of 6082 aluminum alloy after deformation and the strengthening mechanisms were also discussed. The results showed that the dynamic recovery was the main softening mechanism of 6082 aluminum alloy. Meanwhile the nucleation and growth of aging precipitates was closely related to the dislocation density in the matrix.
引文
[1] Miller W S, Zhuang L, Bottema J, Wittebrood A, De Smet P, Haszler A, Vieregge A. Recent development in aluminium alloys for the automotive industry [J]. Materials Science and Engineering: A, 2000, 280(1): 37.
    [2] Liu J A, Sheng C L, Liu Z G, Pan W J. The development and applications of automobile aluminum material and the development direction of focus new product [J]. Aluminium Fabrication, 2012, (5): 4.(刘静安, 盛春磊, 刘志国, 潘伟津. 铝材在汽车上的开发应用及重点新材料产品研发方向 [J]. 铝加工, 2012, (5): 4.)
    [3] Li S, Huang Z G, Jin S Y, Wang B Y, Liu X Q, Lei K. Heat treatment process of cold rolled 5A70 aluminum alloy superplastic sheet [J]. Chinese Journal of Nonferrous Metals, 2018, 42(4): 344.(李升, 黄重国, 靳舜尧, 王宝雨, 刘新芹, 雷鹍. 冷轧 5A70 铝合金超塑性板材热处理工艺 [J]. 稀有金属, 2018, 42(4): 344.)
    [4] Feng M B. Development and applications of new materials in automotive lightweighting technologies [J]. Automotive Engineering, 2006, 28(3): 213.(冯美斌. 汽车轻量化技术中新材料的发展及应用 [J]. 汽车工程, 2006, 28(3): 213.)
    [5] Choi J S, Nawaz S, Hwang S K, Lee, H C, Im Y T. Forgeability of ultra-fine grained aluminum alloy for bolt forming [J]. International Journal of Mechanical Sciences, 2010, 52(10): 1269.
    [6] Wu B, Li M Q, Ma D W. The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy [J]. Materials Science and Engineering: A, 2012, 542: 79.
    [7] Zhang L J, Chang H, Xue X Y. Isothermal forging technology and its application in aviation industry [J]. Hot Working Technology, 2010, 39(21): 21.(张利军, 常辉, 薛祥义. 等温锻造技术及其在航空工业中的应用 [J]. 热加工工艺, 2010, 39(21): 21.)
    [8] Luo J, Li M, Li H, Yu W. Effect of the strain on the deformation behavior of isothermally compressed Ti-6Al-4V alloy [J]. Materials Science and Engineering: A, 2009, 505(1): 88.
    [9] Wu X H, Zhao G Q, LuanY G, Ma X W. Numerical simulation and die structure optimization of an aluminum rectangular hollow pipe extrusion process [J]. Materials Science and Engineering: A, 2006, 435: 266.
    [10] Hu H, Li Z, Liang Y, Shao W Z, Zhang B Y. Deformation behavior and microstructure evolution of 7050 aluminum alloy during high temperature deformation [J]. Materials Science and Engineering: A, 2008, 488(1): 64.
    [11] Azarbarmas M, Aghaie-Khafri M, Cabrera J M, Calvo J. Dynamic recrystallization mechanisms and twining evolution during hot deformation of inconel 718 [J]. Materials Science and Engineering: A, 2016, 678: 137.
    [12] Li H, Liang Y F, Yang W, Ye F, Lin, J P, Xie J X. Disordering induced work softening of Fe-6.5 wt% Si alloy during warm deformation [J]. Materials Science and Engineering: A, 2015, 628: 262.
    [13] Lin Y C, Liu Y X, Chen M S, Huang M H, Ma X, Long Z L. Study of static recrystallization behavior in hot deformed Ni-based superalloy using cellular automaton model [J]. Materials & Design, 2016, 99: 107.
    [14] Li H Z, Wang H J, Liang X P, Liu H T, Liu Y, Zhang X M. Hot deformation and processing map of 2519A aluminum alloy [J]. Materials Science and Engineering: A, 2011, 528(3): 1548.
    [15] Carmona R, Zhu Q, Sellars C M, Beynon J H. Controlling mechanisms of deformation of AA5052 aluminium alloy at small strains under hot working conditions [J]. Materials Science and Engineering: A, 2005, 393(1): 157.
    [16] Shang B C, Yin Z M, Wang G, Liu B, Huang Z Q. Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy [J]. Materials & Design, 2011, 32(7): 3818.
    [17] Marioara C D, Andersen S J, Jansen J, Zandbergen H W. The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al-Mg-Si alloy [J]. Acta Materialia, 2003, 51(3): 789.
    [18] Dadbakhsh S, Taheri A K, Smith C W. Strengthening study on 6082 Al alloy after combination of aging treatment and ECAP process [J]. Materials Science and Engineering: A, 2010, 527(18): 4758.
    [19] Sellars C M, Tegart W M. Hot workability [J]. International Metallurgical Reviews, 1972, 17(1): 1.
    [20] Lin G Y, Zhang H, Guo W C, Peng D S. The flow stress of hot deformation 7075 aluminum alloy [J]. Chinese Journal of Nonferrous Metals, 2001, 11(3): 412.(林高用, 张辉, 郭武超, 彭大暑. 7075铝合金热压缩变形流变应力 [J]. 中国有色金属学报, 2001, 11(3): 412.)
    [21] Liu F, Chen J, Dong J, Zhang M, Yao Z. The hot deformation behaviors of coarse, fine and mixed grain for Udimet 720Li superalloy [J]. Materials Science and Engineering: A, 2016, 651: 102.
    [22] Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22.
    [23] Prasad Y V. Processing maps: a status report [J]. Journal of Materials Engineering and Performance, 2003, 12(6): 638.
    [24] Hu D C, Wang L. Hot formability of 6082 aluminum alloy based on processing map [J]. Transactions of Materialsand Heat Treatment, 2015, (5): 223.(胡道春, 王蕾. 基于加工图的6082铝合金热成形性能 [J]. 材料热处理学报, 2015, (5): 223.)
    [25] Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22.
    [26] Chakrabarti D J, Laughlin D E. Phase relations and precipitation in Al-Mg-Si alloys with Cu additions [J]. Progress in Materials Science, 2004, 49(3): 389.
    [27] Murayama M, Hono K, Saga M, Kikuchi M. Atom probe studies on the early stages of precipitation in Al-Mg-Si alloys [J]. Materials Science and Engineering: A, 1998, 250(1): 127.
    [28] Andersen S J, Zandbergen H W, Jansen J, Traeholt C, Tundal U, Reiso O. The crystal structure of the β″ phase in Al-Mg-Si alloys [J]. Acta Materialia, 1998, 46(9): 3283.
    [29] Deschamps A, Livet F, Brechet Y. Influence of predeformation on ageing in an Al-Zn-Mg alloy-I. Microstructure evolution and mechanical properties [J]. Acta Materialia, 1998, 47(1): 281.
    [30] Deschamps A, Brechet Y. Influence of predeformation and ageing of an Al-Zn-Mg alloy-II. Modeling of precipitation kinetics and yield stress [J]. Acta Materialia, 1998, 47(1): 293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700