蛋白质组学分析揭示玉米籽粒发育过程中胁迫相关蛋白的表达特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Proteomic Analysis of Maize Reveals Expression Characteristics of Stress-Related Proteins During Grain Development
  • 作者:于涛 ; 李耕 ; 刘鹏 ; 董树亭 ; 张吉旺 ; 赵斌
  • 英文作者:YU Tao;LI Geng;LIU Peng;DONG ShuTing;ZHANG JiWang;ZHAO Bin;College of Agronomy,Shandong Agricultural University/State Key Laboratory of Crop Biology;
  • 关键词:玉米 ; 籽粒发育 ; iTRAQ蛋白质组学 ; 胁迫相关蛋白 ; 蛋白功能
  • 英文关键词:maize;;grain development;;iTRAQ proteomics;;stress-related protein;;protein function
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:山东农业大学农学院/作物生物学国家重点实验室;
  • 出版日期:2017-06-19 16:07
  • 出版单位:中国农业科学
  • 年:2017
  • 期:v.50
  • 基金:国家自然科学基金(31371576,31401339);; 国家重点研发计划项目(2016YFD0300106,2016YFD0300205);; 国家科技支撑计划项目(2013BAD07B06-2);; 国家公益性行业(农业)科研专项经费项目(201203100,201203096);; 山东省现代农业产业技术体系项目(SDAIT-02-08);; 国家现代农业产业技术体系建设项目(CARS-02-20);; 山东省高等学校科技计划项目(J14LF10);; 山东省农业重大应用技术创新课题;; 山东省玉米育种与栽培技术企业重点实验室
  • 语种:中文;
  • 页:ZNYK201711017
  • 页数:15
  • CN:11
  • ISSN:11-1328/S
  • 分类号:179-193
摘要
【目的】从蛋白质组学的层面探讨玉米籽粒发育过程中胁迫相关蛋白的表达特性,分析其功能,揭示籽粒自身防御系统的分子调控机理。【方法】大田条件下,以玉米品种登海661(DH661)为供试材料,67 500株/hm~2密度下种植,开花期人工饱和授粉后第3、5、10、15、20、30、40和50天(DAP)取果穗中部籽粒。TCA-丙酮沉淀法提取籽粒总蛋白,用同位素标记相对定量(i TRAQ)技术进行蛋白质组学分析。通过匹配Uniprot玉米蛋白数据库鉴定籽粒总蛋白,并且用基因本论(GO)注释按照生物过程、分子功能及细胞组件进行功能分类。分析鉴定籽粒发育过程中显著差异表达的胁迫相关蛋白,并且将其分层聚类以展示其在籽粒发育过程中的表达模式。【结果】通过匹配玉米蛋白数据库,籽粒中总计鉴定到4 751个蛋白,这些蛋白涉及多种生物过程与分子功能,其中代谢过程与分子过程是最主要的两个生物过程,而催化活性与绑定功能是最主要的两个分子功能类别,表明这些生物过程与分子功能对籽粒发育具有重要作用。定量分析检测到123个胁迫相关蛋白在玉米籽粒发育过程中显著差异表达,主要参与籽粒蛋白修饰(33个)、活性氧(ROS)体内平衡(31个)、贮藏物质保护(17个)、病虫害响应(8个)及其他胁迫响应过程(34个)。蛋白修饰相关蛋白主要包含一系列的热激蛋白、肽基脯氨酰顺反异构酶及蛋白二硫键异构酶,并且这些蛋白在籽粒不同发育阶段均显著积累,这对稳定籽粒中的蛋白结构具有重要作用。ROS相关蛋白包含不同的抗氧化酶系,并且主要在籽粒发育前、后期显著积累,维护了ROS的体内平衡。贮藏物质保护相关蛋白主要包含多种蛋白酶抑制剂、油脂体蛋白及油脂体固醇蛋白,并且这些蛋白随着籽粒发育不断上调表达,保护了贮藏物质的合成与积累。病虫害响应相关蛋白同样在籽粒发育后期显著积累,增强了籽粒对生物胁迫的抗性。其他胁迫响应相关蛋白主要包括一系列的晚期胚胎丰富蛋白(LEA)、膜联蛋白、脂质转移蛋白、非特异性脂质转移蛋白及脂氧合酶,其中LEA在籽粒发育后期显著积累,膜联蛋白与脂氧合酶主要在发育前期显著表达,而脂质转移蛋白及非特异性脂质转移蛋白在籽粒不同发育阶段均有积累,表明这些蛋白在籽粒不同发育阶段发挥重要作用。【结论】胁迫相关蛋白在籽粒不同发育阶段显著积累,构建了一个协同、多样、稳定的防御调控机制,维护了籽粒正常的发育过程。
        【Objective】In order to understand the molecular regulation mechanism of defense system in maize grain,the expression characteristics of stress-related proteins during grain development were studied by using approach of plant proteomics.【Method】Denghai 661(DH661) was used as experimental material and planted at 67 500 plants/hm~2 in field.The middle grains were harvested after flowering artificial saturation pollination at 3,5,10,15,20,30,40,50 d,respectively.The total proteins were extracted by the TCA-acetone precipitation method and then were analyzed by isobaric tags for relative and absolute quantitation(i TRAQ) proteomics.The proteins in maize grain were identified by searching the Uniprot maize protein database and gene ontology(GO) annotation was used to classify the functions of these proteins according to the biological process,molecular function and cellular component.Quantitative analysis was applied to identify stress-related proteins that were significantly differentially expressed during grain development.Hierarchical cluster analysis was used to show the expression patterns of these stress-related proteins during grain development.【Result】A total of 4 751 proteins were identified in maize grain by matching the maize protein database,and these proteins were involved in diverse biological processes and molecular functions,of which the metabolic process and molecular processes were the main biological processes,and the catalytic activity and binding function were the main molecular categories,showing that these biological processes and molecular functions played important roles in maize grain development.Quantitative analysis detected 123 stress-related proteins were significantly differentially expressed during grain development,and these proteins were mainly involved in grain protein modification(33),reactive oxygen species(ROS) homeostasis(31),storage material protection(17),disease response(8) and other stress response process(34).The proteins related to protein modification mainly included a series of heat shock protein,peptidyl-prolyl cis-trans isomerase and protein disulfide isomerase,and these proteins significantly accumulated at different development stages,which played important roles in stability of protein structure.ROS related proteins contained a variety of antioxidants,and mainly significantly accumulated at both early and late development stages,which maintained the homeostasis of ROS.Storage material protection related proteins mainly contained a variety of protease inhibitors,oleosin and steroleosin,and the expression of these proteins were constantly raised with the grain development,which protected the synthesis and accumulation of storage material.The proteins involved in disease response also significantly accumulated at late development stage,which enhanced the grain resistance to biological stresses.Proteins involved in other stress response mainly included a series of late embryogenesis abundant protein(LEA),annexin,lipid transfer protein,nonspecific lipid transfer protein and lipoxygenase,of which all of the LEA significantly accumulated at late development stage,annexin and lipoxygenase significantly accumulated at early development stage,while lipid transfer protein and nonspecific lipid transfer proteins were accumulated at different development stages,showing that these proteins played important roles in different grain development stages.【Conclusion】Stress-related proteins were accumulated during maize grain different development stages,which constructed a harmonious,diverse and stable defense regulatory mechanism,and thus maintained the normal development of maize grain.
引文
[1]SABELLI P A,LARKINS B A.The development of endosperm in grasses.Plant Physiology,2009,149(1):14-26.
    [2]MOORE J P,LE N T,BRANDT W F,DRIOUICH A,FARRANT J M.Towards a systems-based understanding of plant desiccation tolerance.Trends in Plant Science,2009,14(2):110-117.
    [3]HUANG H,M?LLER I M,SONG S Q.Proteomics of desiccation tolerance during development and germination of maize embryos.Journal of Proteomics,2011,75(4):1247-1262.
    [4]段灿星,王晓鸣,宋凤景,孙素丽,周丹妮,朱振东.玉米抗穗腐病研究进展.中国农业科学,2015,48(11):2152-2164.DUAN C X,WANG X M,SONG F J,SUN S L,ZHOU D N,ZHU Z D.Advances in research on maize resistance to ear rot.Scientia Agricultura Sinica,2015,48(11):2152-2164.(in Chinese)
    [5]李秀坤,刘昌林,周羽,雍洪军,张德贵,翁建峰,王振华.玉米病毒病的研究进展.作物杂志,2015(3):13-16.LI X K,LIU C L,ZHOU Y,YONG H J,ZHANG D G,WENG J F,WANG Z H.Research progress of viral diseases in maize.Crops,2015(3):13-16.(in Chinese)
    [6]张仁和,郭东伟,张兴华,路海东,刘建超,李凤艳,郝引川,薛吉全.吐丝期干旱胁迫对玉米生理特性和物质生产的影响.作物学报,2012,38(10):1884-1890.ZHANG R H,GUO D W,ZHANG X H,LU H D,LIU J C,LI F Y,HAO Y C,XUE J Q.Effects of drought stress on physiological characteristics and dry matter production in maize silking stage.Acta Agromica Sinica,2012,38(10):1884-1890.(in Chinese)
    [7]赵福成,景立权,闫发宝,陆大雷,王桂跃,陆卫平.灌浆期高温胁迫对甜玉米籽粒糖分积累和蔗糖代谢相关酶活性的影响.作物学报,2013,39(9):1644-1651.ZHAO F C,JING L Q,YAN F B,LU D L,WANG G Y,LU W P.Effects of heat stress during grain filling on sugar accumulation and enzyme activity associated with sucrose metabolism in sweet corn.Acta Agromica Sinica,2013,39(9):1644-1651.(in Chinese)
    [8]赵龙飞,李潮海,刘天学,王秀萍,僧珊珊,潘旭.玉米花期高温响应的基因型差异及其生理机制.作物学报,2012,38(5):857-864.ZHAO L F,LI C H,LIU T X,WANG X P,SENG S S,PAN X.Genotypic responses and physiological mechanisms of maize(Zea mays L.)to high temperature stress during flowering.Acta Agromica Sinica,2012,38(5):857-864.(in Chinese)
    [9]周卫霞,董朋飞,王秀萍,李潮海.弱光胁迫对不同基因型玉米籽粒发育和碳氮代谢的影响.作物学报,2013,39(10):1826-1834.ZHOU W X,DONG P F,WANG X P,LI C H.Effects of low-light stress on kernel setting and metabolism of carbon and nitrogen in different maize(Zea mays L.)genotypes.Acta Agromica Sinica,2013,39(10):1826-1834.(in Chinese)
    [10]余卫东,冯利平,盛绍学,石磊,李德.涝渍胁迫下夏玉米的灌浆特征及其动态模拟.中国生态农业学报,2015,23(9):1142-1149.YU W D,FENG L P,SHENG S X,SHI L,LI D.Analysis of the dynamics and characteristics of grain filling in summer maize under waterlogging stress.Chinese Journal of Eco-Agriculture,2015,23(9):1142-1149.(in Chinese)
    [11]任佰朝,张吉旺,李霞,范霞,董树亭,赵斌,刘鹏.淹水胁迫对夏玉米籽粒灌浆特性和品质的影响.中国农业科学,2013,46(21):4435-4445.REN B Z,ZHANG J W,LI X,FAN X,DONG S T,ZHAO B,LIU P.Effect of waterlogging on grain filling and quality of summer maize.Scientia Agricultura Sinica,2013,46(21):4435-4445.(in Chinese)
    [12]SCHULZE W X,USADEL B.Quantitation in mass-spectrometrybased proteomics.Annual Review of Plant Biology,2010,61(1):491-516.
    [13]MA C,ZHOU J,CHEN G,BIAN Y,LüD,LI X,WANG Z,YAN Y.i TRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development.BMC Genomics,2014,15(1):1029.
    [14]ZI J,ZHANG J,WANG Q,ZHOU B,ZHONG J,ZHANG C,QIU X,WEN B,ZHANG S,FU X,LIN L,LIU S.Stress responsive proteins are actively regulated during rice(Oryza sativa)embryogenesis as indicated by quantitative proteomics analysis.PLo S ONE,2013,8(9):e74229.
    [15]CONESA A,G?TZ S,GARCíA-GóMEZ J M,TEROL J,TALóN M,ROBLES M.Blast2GO:A universal tool for annotation,visualization and analysis in functional genomics research.Bioinformatics,2005,21(18):3674-3676.
    [16]CHEN J,ZENG B,ZHANG M,XIE S,WANG G,HAUCK A,LAI J.Dynamic transcriptome landscape of maize embryo and endosperm development.Plant Physiology,2014,166(1):252-264.
    [17]TEOH K T,REQUESENS D V,DEVAIAH S P,JOHNSON D,HUANG X,HOWARD J A,HOOD E E.Transcriptome analysis of embryo maturation in maize.BMC Plant Biology,2013,13(1):19.
    [18]于涛,李耕,刘鹏,董树亭,张吉旺,赵斌,柏晗.玉米早期发育阶段粒位效应的蛋白质组学分析.中国农业科学,2016,49(1):54-68.YU T,LI G,LIU P,DONG S T,ZHANG J W,ZHAO B,BAI H.Proteomics analysis of grain position effects during early developmental stages of maize.Scientia Agricultura Sinica,2016,49(1):54-68.(in Chinese)
    [19]刘怀华,王莉雯,刘楠,刘旭,马侠,宁丽华,张华,崔德周,姜川,陈化榜.玉米花粉与花丝早期互作的蛋白质组学分析.中国农业科学,2010,43(24):5000-5008.LIU H H,WANG L W,LIU N,LIU X,MA X,NING L H,ZHANG H,CUI D Z,JIANG C,CHEN H B.Proteomic analyses of the early pollen-silk interaction in maize.Scientia Agricultura Sinica,2010,43(24):5000-5008.(in Chinese)
    [20]MéCHIN V,BALLIAU T,CHATEAU-JOUBERT S,DAVANTURE M,LANGELLA O,NEGRONI L,PRIOUL J L,THEVENOT C,ZIVY M,DAMERVAL C.A two dimensional proteome map of maize endosperm.Phytochemistry,2004,65(11):1609-1618.
    [21]HUANG H,M?LLER I M,SONG S Q.Proteomics of desiccation tolerance during development and germination of maize embryos.Journal of Proteomics,2011,75(4):1247-1262.
    [22]WANG W,VINOCUR B,SHOSEYOV O,ALTMAN A.Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response.Trends in Plant Science,2004,9(5):244-252.
    [23]陈珍,江琼,朱诚.植物中的蛋白质二硫键异构酶及其类蛋白.植物生理学报,2013,49(8):715-721.CHEN Z,JIANG Q,ZHU C.Protein disulfide isomerise and PDI-like proteins in plant.Plant Physiology Journal,2013,49(8):715-721.(in Chinese)
    [24]MITTLER R,VANDERAUWERA S,GOLLERY M,BREUSEGEM F V.Reactive oxygen gene network of plants.Trends in Plant Science,2004,9(10):490-498.
    [25]ROLLETSCHEK H,KOCH K,WOBUS U,BORISJUK L.Positional cues for the starch/lipid balance in maize kernels and resource partitioning to the embryo.The Plant Journal,2005,42(1):69-83.
    [26]HOEKSTRA F A,GOLOVINA E A,BUITINK J.Mechanisms of plant desiccation tolerance.Trends in Plant Science,2001,6(9):431-438.
    [27]GUO W J,BUNDITHYA W,GOLDSBROUGH P B.Characterization of the Arabidopsis metallothionein gene family:Tissue-specific expression and induction during senescence and in response to copper.New Phytology,2003,159(2):369-381.
    [28]肖怀秋,林亲录,李玉珍,赵明谋.蛋白酶抑制剂抗虫基因工程研究进展.生物技术通报,2004(6):22-25.XIAO H Q,LIN Q L,LI Y Z,ZHAO M M.Advances on applied studies of protease inhibitor in gene engineering.Biotechnology Bulletin,2004(6):22-25.(in Chinese)
    [29]SILOTO R M,FINDLAY K,LOPEZ-VILLALOBOS A,YEUNG E C,NYKIFORUK C L,MOLONEY M M.The accumulation of oleosins determines the size of grain oilbodies in Arabidopsis.Plant Cell,2006,18(8):1961-1974.
    [30]程红梅,简桂良,倪万潮,杨红华,王志兴,孙文姬,张保龙,王晓峰,马存,贾士荣.转几丁质酶和β-1,3-葡聚糖酶基因提高棉花对枯萎病和黄萎病的抗性.中国农业科学,2005,38(6):1160-1166.CHENG H M,JIAN G L,NI W C,YANG H H,WANG Z X,SUN W J,ZHANG B L,WANG X F,MA C,JIA S R.Increase of fusariumand verticillium-resistance by transferring chitinase and glucanase gene into cotton.Scientia Agricultura Sinica,2005,38(6):1160-1166.(in Chinese)
    [31]SANO N,MASAKI S,TANABATA T,YAMADA T,HIRASAWA T,KANEKATSU M.Proteomic analysis of stress-related proteins in rice seeds during the desiccation phase of grain filling.Plant Biotechnology,2013,30(2):147-156.
    [32]WU X,LIU H,WANG W,CHEN S,HU X,LI C.Proteomic analysis of seed viability in maize.Acta Physiologiae Plantarum,2011,33(1):181-191.
    [33]刘露露,陈雷,张春艳,石瑞杰,任江萍,孟凡荣,尹钧,李永春.两个小麦LEA基因的特征及其对非生物胁迫的响应.中国农业科学,2014,47(19):3736-3745.LIU L L,CHEN L,ZHANG C Y,SHI R J,REN J P,MENG F R,YIN J,LI Y C.Characterization of two LEA genes and their response to abiotic stresses in wheat.Scientia Agricultura Sinica,2014,47(19):3736-3745.(in Chinese)
    [34]KONOPKA-POSTUPOLSKA D,CLARK G,HOFMANN A.Structure,function and membrane interactions of plant annexins:An update.Plant Science,2011,181(3):230-241.
    [35]何全光,邝健飞,陈建业,陆旺金.脂氧合酶在香蕉果实成熟过程中的作用.中国农业科学,2011,44(1):118-124.HE Q G,KUANG J F,CHEN J Y,LU W J.The role of lipoxygenase in banana fruit ripening.Scientia Agricultura Sinica,2011,44(1):118-124.(in Chinese)
    [36]FARMER E E,JOHNSON R R,RYAN C A.Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid.Plant Physiology,1992,98(3):995-1002.
    [37]GARCíA-OLMEDO F,MOLINA A,SEGURA A,MORENO M.The defensive role of nonspecific lipid-transfer proteins in plants.Trends in Microbiology,1995,3(3):72-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700