用户名: 密码: 验证码:
超憎水SiO_2/FEVE复合涂层的制备
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of Superhydrophobic SiO_2/FEVE Composite Coating
  • 作者:宗立君 ; 李辛庚 ; 吴亚平 ; 米春旭 ; 姜波
  • 英文作者:ZONG Li-jun;LI Xin-geng;WU Ya-ping;MI Chun-xu;JIANG Bo;Electric Power Research Institute, State Grid Shandong Electric Power Company;
  • 关键词:超憎水 ; FEVE ; 复合涂层 ; 纳米SiO_2 ; 涂料配方
  • 英文关键词:superhydrophobic;;FEVE;;composite coating;;nano silica;;coating formula
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:国网山东省电力公司电力科学研究院;
  • 出版日期:2019-04-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 语种:中文;
  • 页:BMJS201904033
  • 页数:8
  • CN:04
  • ISSN:50-1083/TG
  • 分类号:229-236
摘要
目的制备超憎水SiO_2/FEVE复合涂层。方法使用物理混合方式将SiO_2填料加入到成膜物FEVE树脂中,制得超憎水涂料,并通过雾化喷涂在玻璃片上形成超憎水涂层。通过指触法测量了涂层的表干时间,利用接触角测量仪、扫描电镜以及原子力显微镜检测了超憎水SiO_2/FEVE复合涂层的憎水性能与微观形貌,并利用划格法评价了涂层的附着力。结果根据溶解度参数相近以及环保性原则选用了乙酸乙酯与乙酸丁酯的混合溶剂,最终得出超憎水SiO_2/FEVE复合涂料的配方为:100 g FEVE树脂、135 g乙酸乙酯、90 g乙酸丁酯、25 g D-SiO_2、10.5 g HDI。涂料配制完成后,采用大雾化量与大流量结合的喷涂工艺便可完成SiO_2/FEVE超憎水涂层的制备。涂层形成了含有内嵌孔洞的珊瑚状结构,表面呈现为规律交替分布的突起和凹陷区构成的粗糙结构,接触角可达152.8°,滚动角为8°。结论调整溶剂种类与固化剂加入量并未对涂层的结合力或成膜性有所改善,填料比例是影响涂层成膜性与憎水性能的关键工艺参数。涂层表面有序分布的微纳米级凹凸结构形成了超憎水表面所需有效的表面微观粗糙结构,这是涂层具有优良憎水性能的主要原因。
        The work aims to prepare superhydrophobic SiO_2/FEVE composite coating. SiO_2 filler was added into FEVE resin by physical mixing to obtain the superhydrophobic painting and then the superhydrophobic coating was formed on the glass sheet by atomized spraying. Surface drying time of the coating was measured by finger contact method and the hydrophobicity and micro-morphology of superhydrophobic SiO_2/FEVE composite coatings were detected by contact angle meter, scanning electron microscopy(SEM) and atomic force microscopy(AFM). In addition, the adhesion of the coating was evaluated through scratch adhesion testing. The mixed solvent of ethyl acetate and butyl acetate was chosen based on the principle of similar solubility parameters and environmental protection. The optimal formulation of superhydrophobic SiO_2/FEVE composite coating was composed of 100 g FEVE resin, 135 g ethyl acetate, 90 g butyl acetate, 25 g D-SiO_2 and 10.5 g HDI. Spraying process combined with large atomization quality and high flow was adopted to prepare the superhydrophobic SiO_2/FEVE composite coating. Coral-like micro-structures were formed in the coating and the coating surface appeared as rough microstructures constructed by alternative distribution of protuberance and concave filed. Water contact angle and sliding angle of the superhydrophobic SiO_2/FEVE coating could reach 152.8° and 8° respectively. The bonding force and film-forming ability can not be improved by adjusting the solvents and curing agent proportion, but the filler proportion is the key parameter affecting the film-forming ability and superhydrophilicity. Superior hydrophobicity of the coating is attributed to surface micro-rough structure formed by orderly distribution of micro-nano concave-convex structure.
引文
[1]ZHANG X,SHI F,NIU J,et al.Superhydrophobic surfaces:From structural control to functional application[J].Journal of materials chemistry,2008,18(6):621-633.
    [2]KHOJASTEH D,KAZEROONI N M,SALARIAN S,et al.Droplet impact on superhydrophobic surfaces:A review of recent developments[J].Journal of industrial&engineering chemistry,2016,42:1-14.
    [3]SEDAI B R,KHATUWADA B K,MORTAZAVIAN H,et al.Development of superhydrophobicity in fluorosilanetreated diatomaceous earth polymer coatings[J].Applied surface science,2016,386:178-186.
    [4]ZHANG Xin,MO Ji-liang,SI Yi-fan,et al.How does substrate roughness affect the service life of a superhydrophobic coating[J].Applied surface science,2018,441:491-499.
    [5]BHUSHAN B,JUNG Y C.Natural and biomimetic artificial surfaces for superhydrophobicity,self-cleaning,low adhesion,and drag reduction[J].Applied surface science,2011,56:1-108.
    [6]BLOSSEY R.Self-cleaning surfaces-virtual realities[J].Nature materials,2003,2(5):301-306.
    [7]MOHAMED A M A,ABDULLAH A M,YOUNAN N A.Corrosion behavior of superhydrophobic surfaces:A review[J].Arabian journal of chemistry,2015,8(6):749-765.
    [8]HUANG Y,SARKAR D K,GALLANT D,et al.Corrosion resistance properties of superhydrophobic copper surfaces fabricated by one-step electrochemical modification process[J].Applied surface science,2013,282(5):689-694.
    [9]ZUO Z,LIAO R,GUO C,et al.Fabrication and anti-icing property of coral-like superhydrophobic aluminum surface[J].Applied surface science,2015,331:132-139.
    [10]仇伟,刘见祥,曾舒,等.超疏水涂料的制备及其防覆冰性能[J].表面技术,2012,41(6):108-110.QIU Wei,LIU Jian-xiang,ZENG Shu,et al.Preparation and anti-icing properties of superhydrophobic coating[J].Surface technology,2012,41(6):108-110.
    [11]ARTHLOTT W,NEINHUIS C.The purity of sacred lotus or escape from contamination in biological surface[J].Planta,1997,202:1-8.
    [12]倪玉德.FEVE氟碳树脂与氟碳涂料[M].北京:化学工业出版社,2006.NI Yu-de.FEVE fluorocarbon resin and fluorocarbon coatings[M].Beijing:Chemical Industry Press,2006.
    [13]WANG H,LIU Z,WANG E,et al.A robust superhydrophobic PVDF composite coating with wear/corrosion-resistance properties[J].Applied surface science,2015,332:518-524.
    [14]WANG F J,LI C Q,TAN Z S,et al.PVDF surfaces with stable superhydrophilicity[J].Surface&coatings technology,2013,222(19):55-61.
    [15]王冠,张德远,陈华伟.SiO2-PTFE超疏水复合涂层的制备与分析[J].功能材料,2014,45(22):22013-22016.WANG Guan,ZHANG De-yuan,CHEN Hua-wei.Preparation and analysis of Si O2-PTFE superhydrophobic composite coatings[J].Functional materials,2014,45(22):22013-22016.
    [16]WANG H,CHEN E,JIA X,et al.Superhydrophobic coatings fabricated with polytetrafluoroethylene and SiO2,nanoparticles by spraying process on carbon steel surfaces[J].Applied surface science,2015,349:724-732.
    [17]MENINI R,FARZANEH M.Elaboration of Al2O3/PTFEicephobic coatings for protecting aluminum surfaces[J].Surface&coatings technology,2009,203(14):1941-1946.
    [18]MENGA N,MUNDO R D,CARBONE G.Soft blasting of fluorinated polymers:The easy way to superhydrophobicity[J].Materials&design,2017,121:414-420.
    [19]LI Yun-de,LIU Yun-fang,YU Zuo,et al.Effects of dispersants on dispersion of carbon nanotubes and properties of fluorocarbon resin nanocomposites[J].Journal of materials science,2008,43(10):3738-3741.
    [20]GAO D,JIA M.Hierarchical Zn O particles grafting by fluorocarbon polymer derivative:Preparation and superhydrophobic behavior[J].Applied surface science,2015343:172-180.
    [21]ZHOU Y,LI M,ZHONG X,et al.Hydrophobic composite coatings with photocatalytic self-cleaning properties by micro/nanoparticles mixed with fluorocarbon resin[J].Ceramics international,2015,41(4):5341-5347.
    [22]胡玮华.常温固化FEVE涂料的制备与性能研究[D].杭州:浙江大学,2013.HU Wei-hua.Study on the synthesis and properties of room temperature cured FEVE coatings[D].Hangzhou:Zhejiang University,2013.
    [23]管从胜,王威强.氟树脂涂料及应用[M].北京:化学工业出版社,2005:156.GUAN Cong-sheng,WANG Wei-qiang.Fluorocarbon coatings and applications[M].Beijing:Chemical Industry Press,2005:156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700