海上风机基础超单元计算方法对比研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison Between Offshore Wind Turbine Substructures Caculation Methods
  • 作者:周润 ; 李昕 ; 王文华
  • 英文作者:ZHOU Run;LI Xin;WANG Wenhua;State Key Laboratory of Coastal and Offshore Engineering, School of Hydraulic Engineering,Dalian University of Technology;
  • 关键词:半整体模型 ; 凝聚方法 ; 整体耦合模型
  • 英文关键词:semi-integrated analysis model;;condensation method;;fully coupled analysis model
  • 中文刊名:FSJS
  • 英文刊名:Journal of Water Resources and Architectural Engineering
  • 机构:大连理工大学水利工程学院海岸与近海工程国家重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:水利与建筑工程学报
  • 年:2019
  • 期:v.17;No.85
  • 基金:国家自然科学基金资助项目(51879040)
  • 语种:中文;
  • 页:FSJS201903023
  • 页数:7
  • CN:03
  • ISSN:61-1404/TV
  • 分类号:135-141
摘要
开展了随机风荷载作用下海上风机整体和半整体计算方法及半整体模型超单元计算方法对比研究。运用ANSYS建立五桩与单桩风机基础模型并提取基础总刚度和质量矩阵,利用MATLAB分别编写C-B法和SEREP法的凝聚程序得到超单元矩阵。基于整体方法和半整体方法进行结构的动力特性及动力响应对比。通过对比发现,在基础超单元选取合理的前提下,该方法得到的海上风机结构响应基本与整体耦合分析方法计算结果一致。进一步对比可得,所选取的C-B方法和SEREP方法虽然凝聚原理不同,不过所得到的基础结构超单元均能够准确模拟随机风荷载作用下转子-机舱-塔筒结构运动响应。
        Comparisons between the fully coupled and semi-integrated calculation methods of offshore wind turbine substructures(OWT) are performed under the random wind load, also the influence of the different substructure's super element on the numerical results of the semi-integrated model is investigated. The substructure models of OWT are established and total stiffness and mass matrixes are extracted by ANSYS. Reduction programs of the C-B and SEREP method are developed and super element matrixes are got by MATLAB. Comparisons of dynamic characteristics and dynamic response are performed based on the fully coupled and semi-integrated methods. According to the comparisons, it is proved that the results of the presented analysis models are agree well with each other if the proper super element is selected in the semi-integrated model. Furthermore, the reduction principle of C-B method and SEREP method is different, but the super element of them can all simulate the motion response of the rotor-cabin-tower structure according to the comparisons.
引文
[1] 范然旭.基于模型减缩理论的高速列车刚柔耦合振动分析[D].长沙:湖南大学,2017:9-10.
    [2] Hridya P L,Jithin J,Sayan G.Reduced order modelling in stochastically parametered acousto-elastic system using arbitrary PCE based SEREP[J].Probabilistic Engineering Mechanics,2018,52(3):1-14.
    [3] 李成.基于应变信息的机械结构动态力识别方法[D].重庆:重庆大学,2016:11-14.
    [4] Valk P L,Voormeeren S N.Model Reduction & Interface Modeling in Dynamic Substructuring[D].Holland:Delft University of Technology,2014:26-35.
    [5] Voormeeren S N,Valk P L.Accurate and efficient modeling of complex offshore wind turbine support structures using augmented superelements[J].Wind Energy,2014,17(7):1035-1054.
    [6] Jason M J,Marshall L Buhl Jro.FAST User's Guide[R].A National Laboratory of the U.S.Deparment of Energy.NERL,2005.
    [7] Neil Luxcey,Harald Ormberg.Global analysis of a floating wind turbine using an aero-hydro-elastic numerical model.part2:benchmark study[C]//ASME 2011 30th International Conference on Ocean,Offshore and Arctic Enginggering American Society of Mechanical Engineers,2011:819-827.
    [8] 方通通.基于耦合模型的海上风机基础结构疲劳分析[D].大连:大连理工大学,2018:20-32.
    [9] Jonkman J,Hayman G,Damiani R.SubDyn user's guide and Theory Manual[R].NREL,Golden,CO(United states),2015:35-54.
    [10] 张雄雄.兰州地铁运行引起白衣寺塔振动响应特性研究[J].水利与建筑工程学报,2018,16(2):212-217.
    [11] 樊惠燕.风浪作用下海上风机单桩基础动力学与疲劳分析[D].哈尔滨:哈尔滨工业大学,2016:24-36.
    [12] Hansen M.Aerodynamics of Wind Turbines[M].UK:Routledge,2015:50-52.
    [13] 常富,纪伟.平面钢闸门流固耦合分析与优化设计[J].水利与建筑工程学报,2018,16(2):184-188.
    [14] 蒋春松,孙浩.ANSYS有限元分析与工程应用[M].北京:电子工业出版社,2014:35-68.
    [15] Jonkman J M,Butterfield S,Musial W,et al.Definition of a 5MW Reference Wind Turbine for Offshore System Development[R].NTRL,Golden,CO(United states),2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700