激光加载下金属锡材料微喷颗粒与低密度泡沫混合实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Observation of ejecta tin particles into polymer foam through high-energy X-ray radiograpy using high-intensity short-pulse laser
  • 作者:税敏 ; 于明海 ; 储根柏 ; 席涛 ; 范伟 ; 赵永强 ; 辛建婷 ; 何卫华 ; 谷渝秋
  • 英文作者:Shui Min;Yu Ming-Hai;Chu Gen-Bai;Xi Tao;Fan Wei;Zhao Yong-Qiang;Xin Jian-Ting;He Wei-Hua;Gu Yu-Qiu;Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics;
  • 关键词:微喷 ; 惯性约束聚变 ; 回收 ; 混合
  • 英文关键词:micron-scale fragment ejecta;;inertial confinement fusion;;recovery;;mixing
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:中国工程物理研究院激光聚变研究中心等离子体物理重点实验室;
  • 出版日期:2019-04-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 语种:中文;
  • 页:WLXB201907020
  • 页数:9
  • CN:07
  • ISSN:11-1958/O4
  • 分类号:213-221
摘要
金属材料的微喷是冲击加载下金属表面发生的一种动态破碎现象,微喷研究在很多领域都具有重要意义,包括惯性约束聚变(ICF)和烟火制造等.由于激光实验特有的优势,近几年国内外开展了很多利用强激光驱动冲击加载研究材料微喷过程的实验.利用泡沫材料对微喷颗粒进行静态软回收虽然可以获得颗粒的形态分布、颗粒尺寸及颗粒质量等定量结果,但并不能反演微喷颗粒从进入泡沫到停滞过程中的动态混合过程.为此,在神光Ⅱ升级装置上利用皮秒脉冲激光照射金丝产生高能X射线,实现了对锡微喷颗粒与低密度泡沫混合过程的高时间分辨和高空间分辨背光照相.背光图像面密度结果证实微喷颗粒在泡沫中并没有发生二次破碎.静态回收结果表明,在锡材料与泡沫紧贴放置的情况下,微喷颗粒在泡沫中的穿透深度随着加载压强升高呈现先增大后减小的规律,与非紧贴放置的实验结果有明显的差别.
        Micron-scale fragment ejection of metal is a kind of surface dynamic fragmentation phenomenon upon shock loading. The study of ejecta is crucial in many fields, such as inertial confinement fusion and pyrotechnics. Due to the particular advantages of laser experiments, a lot of studies of ejecta by strong laserinduced shock loading have been conducted in recent years. The shapes, size and mass of particle can be obtained via static soft recovery technique with foam. However, the stagnation and succedent mixing of the ejecta in the foam could not be deduced by this technique. To study the mixing between the ejecta and foam, a radiography experiment is performed by using the X-ray generated through the irradiation of picosecond laser on the golden wire. This radiography technique has not only high spatial resolution but also high temporal resolution. Two kind of experiments are designed and performed. In the first one, the tin sample and the foam are close to each other while a vacuum gap is arranged between them in the other one. The mixing process is analyzed with the determined areal density and volume density, as well as the results of recovery. The areal density of the front mixing area is similar to the scenario in the case with a vacuum gap, suggesting that the ejecta have not underwent a secondary fragmentation due to the collision with foam. Furthermore, the static recovery results show a different characteristic of penetration depth for the ejecta in the foam. When the tin sample is not close to the foam, the penetration depth in the foam increases with the loading pressure increasing. However, the penetration depth begins to decrease at a critical pressure after a brief increase, which is attributed to the interaction between the shock and the foam before the ejecta coming, and also to the ejecta size and composition. The shock pressure is high enough to change the foam performance, thus enhancing the stagnation ability for ejecta penetration. Moreover, the size and composition vary with loading pressure, thereby leading to the momentum change of the ejecta related to the penetration depth. In the future work, we will improve the field of view of the X-ray radiography to achieve a direct comparison between the dynamic results and the recovery results. Moreover, we will arrange perturbations at the interface to study the mixing between the micro-jetting and the foam and the interface instability.
引文
[1]Wang P,He A M,Shao J L,Sun H Q,Chen D W,Liu W B,Liu J 2018 Sci.China:Physica,Mechanica&Astronomica 48094608(in Chinese)[王裴,何安民,邵建立,孙海权,陈大伟,刘文斌,刘军2018中国科学:物理学力学天文学48 094608]
    [2]de Resseguier T,Signor L,Dragon A,Boustie M,Roy G,Llorca F 2007 J.Appl.Phys.101 013506
    [3]de Resseguier T,Roland C,Prudhomme G,Lescoute E,Loison D,Mercier P 2016 J.Appl.Phys.119 185108
    [4]de Resseguier T,Roland C,Lescoute E,Sollier A,Loison D,Berthe L,Prudhomme G,Mercier P 2015 AIP Conf.Proc.1793 100025
    [5]de Resseguier T,Signor L,Dragon A,Severin P,Boustie M2007 J.Appl.Phys.102 073535
    [6]de Resseguier T,Signor L,Dragon A,Boustie M,Berthe L2008 Appl.Phys.Lett.92 131910
    [7]de Resseguier D,Signor L,Dragon A,Roy G 2010 Int.J.Fract.163 109
    [8]Zellner M B,McNeil W V,Hammerberg J E,Hixson R S,Obst A W,Olson R T,Payton J R,Rigg P A,Routley N,Stevens G D,Turley W D,Veeser L,Buttler W T 2008 J.Appl.Phys.103 123502
    [9]Franzkowiak J E,Prudhomme G,Mercier P,Lauriot S,Dubreuil E,Berthe L 2018 Rev.Sci.Instrum.89 033901
    [10]Asay J R 1978 J.Appl.Phys.49 6173
    [11]Morard G,de Resseguier T,Vinci T,Benuzzi-Mounaix A,Lescoute E,Brambrink E,Koenig M,Wei H,Diziere A,Occelli F,Fiquet G,Guyot F 2010 Phys.Rev.B 82 174102
    [12]de Resseguier T,Lescoute E,Sollier A,Prudhomme G,Mercier P 2014 J.Appl.Phys.115 043525
    [13]Lescoute E,de Resseguier T,Chevalier J M,Boustie M,CuqLelandais J P,Berthe L 2009 Appl.Phys.Lett.95 211905
    [14]Xin J T,Gu Y Q,Li P,Luo X,Jiang B B,Tan F,Han D,Wu Y Z,Zhao Z Q,Su J Q,Zhang B H 2012 Acta Phys.Sin.23 236201(in Chinese)[辛建婷,谷渝秋,李平,罗炫,蒋柏斌,谭放,韩丹,巫殷忠,赵宗清,粟敬钦,张保汉2012物理学报23236201]
    [15]He W H,Xin J T,Chu G B,Li J,Shao J L,Lu F,Shui M,Qian F,Cao L F,Wang P,Gu Y Q 2014 Optics Express 2218924
    [16]He W H,Xin J T,Zhao Y Q,Chu G B,Xi T,Shui M,Lu F,Gu Y Q 2017 AIP Advances 7 065306
    [17]Xin J T,Zhao Y Q,Chu G B,Xi T,Shui M,Fan W,He WH,Gu Y Q 2017 Acta Phys.Sin.18 186201(in Chinese)[辛建婷,赵永强,储根柏,席涛,税敏,范伟,何卫华,谷渝秋2017物理学报18 186201]
    [18]Zhang L,Li Y H,Cheng J M,Li X M,Zhang Z G,Ye X P,Cai L C 2016 High Power Laser and Particle Beams 28041003(in Chinese)[张林,李英华,程晋明,李雪梅,张祖根,叶想平,蔡灵仓2016强激光与粒子束28 041003]
    [19]Chu G B,Xi T,Yu M H,Fan W,Zhao Y Q,Shui M,He WH,Zhang T K,Zhang B,Wu Y C,Zhou W M,Cao L F,Xin J T,Gu Y Q 2018 Rev.Sci.Instrum.89 115106
    [20]Marshall F J,McKenty P W,DelettrezJ A,Epstein R,Knauer J P,Smalyuk V A 2009 Phys.Rev.Lett.102 185004
    [21]Dimonte G,Gore R,and Schneider M 1998 Phys.Rev.Lett.80 1212
    [22]Buttler W T,Oro D M,Preston D L,Mikaelian K O,Cherne F J,Hixson R S,Mariam F G,Morris C,Stone J B,Terrones G,Tupa D 2012 J.Fluid Mech.703 60
    [23]Dimonte G,Terrones G,Cherne F J,Ramaprabhu P 2013 JAppl.Phys.113 024905
    [24]Dimonte G and Remington B 1993 Phys.Rev.Lett.70 1806
    [25]Kuranz C C,Park H S,Huntington C M,Miles A R,Remington B A,Plewa T,Trantham M R,Robey H F,Shvarts D,Shimony A,Raman K,MacLaren S,Wan W C,Doss F W,Kline J,Flippo K A,Malamud G,Handy T A,Prisbrey S,Krauland C M,Klein S R,Harding E C,Wallace R,Grosskopf M J,Marion D C,Kalantar D,Giraldez E,Drake R P 2018 Nature Communications 9 1564

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700