开环易位聚合反应和CuAAC反应联用制备含糖聚合物及其性质研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and Properties of Well-defined Glycopolymers via Combining Ring-opening Metathesis Polymerization and CuAAC Reaction
  • 作者:朱玉 ; 叶文玲 ; 刘志峰 ; 邓维 ; 刘美娜
  • 英文作者:Yu Zhu;Wen-ling Ye;Zhi-feng Liu;Wei Deng;Mei-na Liu;School of Chemical and Environmental Engineering,Shanghai Institute of Technology;State Key Laboratory of Polymer Molecular Engineering,Department of Polymer Science,Fudan University;Key Laboratory of Organic Functional Molecular Synthesis and Assembly Chemistry,Shanghai Institute of Organic Chemistry,Chinese Academy of Sciences;
  • 关键词:开环易位聚合 ; 糖聚合物 ; CuAAC反应 ; 凝集素识别 ; 刀豆蛋白A
  • 英文关键词:Ring-opening metathesis polymerization;;Glycopolymers;;CuAAC reaction;;Lectin recognition;;Concanavalin A
  • 中文刊名:GFXB
  • 英文刊名:Acta Polymerica Sinica
  • 机构:上海应用技术大学化学与环境工程学院;聚合物分子工程国家重点实验室复旦大学高分子科学系;中国科学院有机功能分子合成与组装化学重点实验室上海有机化学研究所;
  • 出版日期:2018-10-12 11:32
  • 出版单位:高分子学报
  • 年:2019
  • 期:v.50
  • 基金:国家自然科学基金青年基金(基金号21604056);; 上海市自然科学基金(基金号16ZR1435600);; 聚合物分子工程国家重点实验开放基金(基金号K2017-16);; 中国科学院有机功能高分子合成与组装化学重点实验室开放基金(基金号K2017-7)资助项目
  • 语种:中文;
  • 页:GFXB201901005
  • 页数:11
  • CN:01
  • ISSN:11-1857/O6
  • 分类号:52-62
摘要
通过将开环易位聚合反应和CuAAC反应联用制备了一系列含糖(共)聚合物.首先采用Cu(I)催化的叠氮-端炔[3+2]环加成(CuAAC)合成了含无保护基团的α-D-甘露糖、β-D-葡萄糖和β-D-半乳糖的7-氧杂降冰片烯衍生物单体;接着利用Grubbs三代催化剂在常温常压下的均相有机溶剂中对不同类的含糖单体进行开环易位聚合(ROMP),通过改变含糖单体的种类和比例,得到了一系列结构明确的含糖均聚和共聚物P1~P11.用核磁共振谱(NMR)和高分辨质谱(HRMS)对合成的糖单体的结构及分子量进行表征.含糖聚合物的分子量(分布)及结构通过凝胶渗透色谱仪(GPC)和核磁共振谱(NMR)进行表征,结果表明分子量可控(Mn=1.3×10~4~2.7×10~4),分子量分布较窄(PDI=1.22~1.45).进一步采用浊度法、动态光散射和等温滴定量热仪研究了含糖聚合物与刀豆蛋白A (concanavalin A,Con A)的特异性识别.浊度法研究发现,共聚物α-D-甘露糖的比例越大,其与Con A的特异性识别能力越强,而只含β-D-半乳糖P9或β-D-葡萄糖P5对刀豆蛋白没有特异性识别.动态光散射实验证实,随着刀豆蛋白A的加入,含甘露糖的溶液中的粒径明显增大,含糖聚合物溶液的粒径由100 nm左右增加到1000 nm左右,而不含甘露糖的聚合物几乎没有变化.等温滴定量热仪测定3种代表性共聚物与Con A的结合常数Ka分别为P3 (50 mol%α-D-甘露糖:50 mol%β-D-葡萄糖,K_a=1.58×10~6 L/mol),P7 (50 mol%α-D-甘露糖:50 mol%β-D-半乳糖,K_a=2.23×10~6 L/mol)和P11 (50 mol%α-D-甘露糖:50 mol%非糖基团,K_a=2.05×10~5 L/mol).可以看出P11与Con A结合能力相对于P3和P7要小很多,说明β-D-葡萄糖和β-D-半乳糖对α-D-甘露糖与Con A的识别作用有较强的协同效应.
        A series of glycopolymers were prepared through combining ring-opening metathesis polymerization(ROMP) and CuAAC reaction.Firstly,a wide range of exo-7-oxanorbornene derivative glycomonomers without protecting groups were synthesized via a copper(I)-catalyzed azide-alkyne Huisgen cycloaddition(CuAAC)reaction,including α-D-mannose,β-D-glucose,and β-D-galactose.A series of well-defined glycopolymers were then obtained from various types and proportions of the above glycomonomers using ring-opening metathesis polymerization(ROMP) with the 3rd Grubbs catalyst in homogeneous organic solvent.Molecular weight and polydispersity index(PDI) of the glycopolymers were characterized by NMR spectroscopy and GPC,from which the well-controlled molecular weight(M_n = 1.3 × 10~4-2.7 × 10~4) in narrow distribution(PDI = 1.22 ~ 1.45) was confirmed.Turbidity measurement,dynamic light scattering(DLS),and isothermal titration calorimetry(ITC)were carried out to investigate the specific recognition of glycopolymers with concanavalin A(Con A).Turbidimetric study suggested a stronger binding ability of glycopolymers with Con A at higher ratio of α-Dmannose in glycopolymers.In comparison,those composed solely of β-D-galactose(P9) or β-D-glucose(P5)could not bind to Con A.Dynamic light scattering experiments demonstrated that the particle sizes of glycopolymers containing α-D-mannose approached 1000 nm with the addition of Con A(originally 100 nm),while the glycopolymers without α-D-mannose showed little size variation.Binding constants(K_a) of the three glycopolymers P3(50 mol% α-D-mannose,50 mol% β-D-glucose),P7(50 mol% α-D-mannose,50 mol% β-Dgalactose),and P11(50 mol% α-D-mannose,50 mol% non-sugar motif) with Con A were 1.58 × 10~6,2.23 × 10~6,and 2.05 × 10~5 L/mol,respectively,as measured by isothermal titration calorimetry.P11 exhibited much weaker ability to bind with Con A than P3 and P7 did,which implied a synergistic effect of β-D-glucose and β-Dgalactose on the recognition of α-D-mannose with Con A.
引文
1Hashimoto K,Ohsawa R,Saito H.J Polym Sci,Part A:Polym Chem,1999,37:2773-2779
    2Fu Q,Gowda D C.Bioconjugate Chem,2001,12:271-279
    3Ma Z,Jia Y,Zhu X.Biomacromolecules,2017,18:3812-3818
    4Wolfenden M L,Cloninger M J.Bioconjugate Chem,2006,17:958-966
    5Serizawa T,Satoshi Y,Akashi M.Biomacromolecules,2001,2:469-475
    6Kanai M,Mortell K H,Kiessling L L.J Am Chem Soc,1997,119:9931-9932
    7Fan F,Cai C,Wang W,Gao L,Li J,Li J,Gu F,Sun T,Li J,Li C,Yu G.ACS Macro Lett,2018,7:330-335
    8Ting,S R S,Min,E H,Escale P,Save M,Billon L,Stenzel M H.Macromolecules,2009,42:9422-9434
    9Song W,Xiao C,Cui L..Tang Z,Zhuang X,Chen X.Colloid Surface B,2012,93:188-194
    10Chen Y,Chen G,Stenzel M H.Macromolecules,2010,43:8109-8114
    11Allen M J,Wangkanont K,Raines R T,Kiessling L L.Macromolecules,2009,42:4023-4027
    12Medina J M,Ko J H,Maynard H D,Garg,N K.Macromolecules,2017,50:580-586
    13Thompson M P,Randolph L M,James C R,Davalos A N,Hahn M E,Gianneschi N C.Polym Chem,2014,5:1954-1964
    14Ladmiral V,Mantovani G,Clarkson G J,Cauet S,Irwin J L,Haddleton D M.J Am Chem Soc,2006,128:4823-4830
    15Loka R S,Mcconnell M S,Nguyen H M.Biomacromolecules,2015,16:4013-4021
    16Gordon E J,Gestwicki J E,Strong L E,Kiessling L L.Chem Bio,2000,7:9-16
    17Manning D D,Xu X,Beck P,Kiessling L L.J Am Chem Soc,1997,119:3161-3162
    18Cairo C W,Gestwicki J E,Kanai M,Kiessling L L.J Am Chem Soc,2002,124:1615-1619
    19Fan F,Cai C,Gao L,Li J,Zhang P,Li L,Li C,Yu G.Polym Chem,2017,8:6709-6719
    20Lowe A B,Liu M,Van H J,Burford R P.Macromol.Rapid Commun,2014,35:391-404
    21Liu M,Hensbergen J V,Burford R P,Lowe A B.Polym Chem,2012,3:1647-1658
    22van Hensbergen J A,Liu M N,Burford R P,Lowe A B.J Mater Chem C,2015,3:693-702
    23Kang B,Okwieka P,Schoettler S,Winzen S,Langhanki J,Mohr K,Wurm F R.Angew Chem,2015,54:7436-7740
    24Percec V,Leowanawat P,Sun H J,Kulikov O,Nusbaum C D,Tran T M,Bertin A,Wilson D A,Peterca M,Zhang S,Kamat N P,Vargo K,Moock D,Johnston E D,Hammer D A,Pochan D J,Chen Y,Chabre Y M,Shiao T C,BergeronBrlek M,Andre S,Roy R,Gabius H J,Heiney P A.J Am Chem Soc,2013,135:9055-9077
    25García V S,Delso I,Merino P,Tejero T.Synthesis,2016,48:3339-3351
    26Li Y,Zhou Y,Zhou Y,Yu Q,Zhu J,Zhou N,Zhang Z,Zhu X.React Funct Polym,2017,116:41-48
    27Liu M,Burford R P,Lowe A B.Polym Int,2014,63:1174-1183
    28Kose M M,Onbulak S,Yilmaz I I,Sanyal A.Macromolecules,2011,44:2707-2714
    29Eissa A M,Khosravi E.Macromol Chem Phys,2015,216:964-976
    30Ma P,Liu S,Huang Y,Chen X,Zhang L,Jing X.Biomaterials,2010,31:2646-2654
    31Xue H,Peng L,Dong Y,Zheng Y Q,Luan Y,Hu X,Chen G,Chen H.RSC Adv,2017,7:8484-8490
    32Lu J,Fu C K,Wang S,Tao L,Yuan L,Haddleton D M,Chen G,Wen Y.Macromolecules,2014,47:4676-4683

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700