临界胁迫贮藏条件对水稻种子活力的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on seed vigor and physiological changes of rice(Oryza sativa L.)under critical stress storage conditions
  • 作者:蒋薇 ; 李瑶 ; 李娜 ; 赵飞 ; 亓娜 ; 蔡卓 ; 曹高燚 ; 华泽田
  • 英文作者:JIANG Wei;LI Yao;LI Na;ZHAO Fei;QI Na;CAI Zhuo;CAO Gao-yi;HUA Ze-tian;College of Agronomy & Resources and Environmental, Tianjin Agricultural University;Sweet Potato Research Institute,Chinese Academy of Agricultural Sciences;China National Japonica Rice Research Center;
  • 关键词:水稻 ; 临界贮藏条件 ; 种子生理 ; 种子活力
  • 英文关键词:rice;;critical storage conditions;;seed physiology;;seed vitality
  • 中文刊名:HBNY
  • 英文刊名:Hubei Agricultural Sciences
  • 机构:天津农学院农学与资源环境学院;中国农业科学院甘薯研究所;国家粳稻工程技术研究中心;
  • 出版日期:2019-07-10
  • 出版单位:湖北农业科学
  • 年:2019
  • 期:v.58;No.634
  • 基金:天津市农委项目(201904020);; 天津市种业重大专项(16ZXZYNC00150);; 天津市大学生创新创业训练计划项目(201610061113)
  • 语种:中文;
  • 页:HBNY201913022
  • 页数:5
  • CN:13
  • ISSN:42-1255/S
  • 分类号:104-107+112
摘要
为了探究不同贮藏环境条件下水稻种子活力的变化规律,对临界胁迫贮藏条件下水稻种子的活力及生理特性进行了系统研究,以期解析水稻种子耐贮性生理生化机制。以粳稻津原E5和津原11为材料,研究了在不同贮藏条件下(4、-10和-20℃)及不同含水量的种子在贮藏期间产生的活力变化及相关生理生化特性变化规律。结果表明,种子活力指标如发芽指数、活力指数与贮藏时间无明显线性关系,可溶性蛋白、丙二醛含量与贮藏时间呈线性关系;其中,可溶性蛋白含量与贮藏时间呈负相关,丙二醛反之。当温度一定时,发芽指数随种子含水量的降低而增加。可溶性蛋白在超低温高含水量情况下受到明显破坏,含量最低。在不同贮藏温度,随含水量下降,丙二醛含量上升。该研究为水稻种子安全贮藏及在兼顾成本的前提下选择最适贮藏条件提供了理论参考。
        In order to explore the changes of rice seed vigor under different storage conditions, the vitality and physiological characteristics of rice seeds under critical stress storage conditions were systematically studied in order to analyze the physiological and biochemical mechanism of rice seed storage. In this study, the indica and fertilization of seeds were studied under different storage conditions(4 ℃,-10 ℃, and-20 ℃) and different water contents during storage. Physiological and biochemical characteristics of the law. The results showed that seed vigor indexes such as germination index, vigor index, and storage time had no obvious linear relationship, while soluble protein, malondialdehyde content and storage time were linearly related; among them, protein content was negatively correlated with time, and malondialdehyde was vice versa. The temperature and moisture content of seeds during storage have a great correlation with the seed vigor. When the temperature is constant,the germination index increases with the decrease of the seed moisture content. Soluble protein was significantly destroyed at the ultra-low temperature and high water content, and the content was the lowest. At different storage temperatures, the malondialdehyde content increased with decreasing water content. This study provides a theoretical reference for the safe storage of rice seeds and the selection of the optimum storage conditions under the premise of taking into account the cost.
引文
[1] RAJJOU L,DUVAL M,GALLARDO K,et al. Seed germination and vigor[J].Annu Rev Plant Biol,2012,63:507-33.
    [2]张玉兰,汪晓峰,景新明,等.水稻种子含水量及其对贮藏寿命的影响[J].中国农业科学,2005,38(7):1480-1486.
    [3]胡群文,卢新雄,辛萍萍,等.水稻种子在不同气候区室温贮藏的适宜含水量及存活特性[J].中国水稻科学,2009,23(6):621-627.
    [4]胡群文,辛霞,陈晓玲,等.水稻种子室温贮藏的适宜含水量及其生理基础[J].作物学报,2012,38(9):1665-1671.
    [5]陈新红,张安存,韩正光,等.烘干温度与时间对不同收获期下水稻种子含水量和活力的影响及相关分析[J].西南农业学报,2014,27(6):2331-2338.
    [6]徐军,管闪青,李斌,等.不同收获期对水稻种子含水量和发芽率的影响[J].上海农业科技,2013(2):41-42.
    [7]缪丽霞,夏斯飞,董学锁,等.不同贮藏条件对水稻种子发芽力的影响[J].中国种业,2013(6):48-50.
    [8]成广雷,张海娇,赵久然,等.临界胁迫贮藏条件下不同基因型玉米种子活力及生理变化[J].中国农业科学,2015,48(1):33-42.
    [9] SIGNORELLI S,CONSIDINE M J. Nitric oxide enables germination by a four-pronged attack on ABA-induced seed dormancy[J].Frontiers in plant science,2018,9:296.
    [10] YANG K,ZHANG Y,ZHU L,et al. Omethoate treatment mitigates high salt stress inhibited maize seed germination[J].Pesticide biochemistry and physiology,2018,144:79-82.
    [11] YE N H,WANG F Z,SHI L,et al. Natural variation in the promoter of rice calcineurin B-like protein10(OsCBL10)affects flooding tolerance during seed germination among rice subspecies[J].The plant journal:for cell and molecular biology,2018,94(4):612-625.
    [12] HAN C,YANG P. Studies on the molecular mechanisms of seed germination[J].Proteomics,2015,15(10):1671-1679.
    [13] VIEIRA B C,BICALHO E M,MUNNE-BOSCH S,et al. Abscisic acid regulates seed germination of Vellozia species in response to temperature[J].Plant biology,2017,19(2):211-216.
    [14] BRUN G,BRAEM L,THOIRON S,et al. Seed germination in parasitic plants:What insights can we expect from strigolactone research[J].Journal of experimental botany,2018,69(9):2265-2280.
    [15] TUAN P A,KUMAR R,REHAL P K,et al. Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals[J].Frontiers in plant science,2018,9:668.
    [16] GRIFFIN C. Temperature signals in seed germination[J].Science,2017,356(6345):1347-1348.
    [17] IBARRA S E,AUGE G,SANCHEZ R A,et al. Transcriptional programs related to phytochrome A function in Arabidopsis seed germination[J].Molecular plant,2013,6(4):1261-1273.
    [18] NEFF M M. Light-mediated seed germination:connecting phytochrome B to gibberellic acid[J].Dev Cell,2012,22(4):687-688.
    [19] OH E,KIM J,PARK E,et al. PIL5,a phytochrome-interacting basic helix-loop-helix protein,is a key negative regulator of seed germination in Arabidopsis thaliana[J].The plant cell,2004,16(11):3045-3058.
    [20] YANG X Y,CHEN Z W,XU T,et al. Arabidopsis kinesin KP1specifically interacts with VDAC3,a mitochondrial protein,and regulates respiration during seed germination at low temperature[J].The plant cell,2011,23(3):1093-1106.
    [21] XIA Q,PONNAIAH M,CUEFF G,et al. Integrating proteomics and enzymatic profiling to decipher seed metabolism affected by temperature in seed dormancy and germination[J].Plant science:an international journal of experimental plant biology,2018,269:118-125.
    [22] REN X X,XUE J Q,WANG S L,et al. Proteomic analysis of tree peony(Paeonia ostii'Feng Dan')seed germination affected by low temperature[J].Journal of plant physiology,2018,224-225:56-67.
    [23]张苗苗,云锦凤,赵彦,等.不同贮藏时间加拿大披碱草种子活力研究初报[J].内蒙古农业科技,2011(2):48-50.
    [24]周建明,林一波,何建华,等.不同收获期和贮藏时间对杂交粳稻种子活力的影响[J].种子,2010,29(10):98-101.
    [25] KAUR H,PETLA B P,KAMBLE N U,et al. Differentially expressed seed aging responsive heat shock protein OsHSP18.2implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress[J].Frontiers in plant science,2015,6:713.
    [26] ZHOU Y,CHEN H,CHU P,et al. Nn HSP17.5,a cytosolic class II small heat shock protein gene from Nelumbo nucifera,contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis[J].Plant cell reports,2012,31(2):379-389.
    [27] OGE L,BOURDAIS G,BOVE J,et al. Protein repair L-isoaspartyl methyltransferase 1 is involved in both seed longevity and germination vigor in Arabidopsis[J].The plant cell,2008,20(11):3022-3037.
    [28] SHU K,QI Y,CHEN F,et al. Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis[J].Frontiers in plant science,2017,8:1372.
    [29] HUANG Y,LIN C,HE F,et al. Exogenous spermidine improves seed germination of sweet corn via involvement in phytohormone interactions,H2O2and relevant gene expression[J].BMC plant biology,2017,17(1):1.
    [30] LI Y,WANG Y,XUE H,et al. Changes in the mitochondrial protein profile due to ROS eruption during ageing of elm(Ulmus pumila L.)seeds[J].Plant physiology and biochemistry,2017,114:72-87.
    [31] PARKHEY S,NAITHANI S C,KESHAVKANT S. ROS production and lipid catabolism in desiccating Shorea robusta seeds during aging[J].Plant physiology and biochemistry,2012,57:261-267.
    [32] CHEN C,TWITO S,MILLER G. New cross talk between ROS,ABA and auxin controlling seed maturation and germination unraveled in APX6 deficient Arabidopsis seeds[J].Plant signaling&behavior,2014,9(12):e976489.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700