雾霾粒子的紫外光散射特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Ultraviolet Scattering Characteristics of Haze Particles
  • 作者:赵太飞 ; 冷昱欣 ; 赵思婷 ; 宋鹏
  • 英文作者:ZHAO Tai-fei;LENG Yu-xin;ZHAO Si-ting;SONG Peng;School of Automation and Information Engineering,Xi'an University of Technology;Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing,Xi'an University of Technology;
  • 关键词:紫外光 ; 雾霾粒子 ; 散射光强 ; 路径损耗
  • 英文关键词:Ultraviolet;;Haze particles;;Scattering intensity;;Path loss
  • 中文刊名:GUAN
  • 英文刊名:Spectroscopy and Spectral Analysis
  • 机构:西安理工大学自动化与信息工程学院;陕西省复杂系统控制与智能信息处理重点实验室西安理工大学;
  • 出版日期:2018-03-15
  • 出版单位:光谱学与光谱分析
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金项目(U1433110);; 陕西省教育厅科研计划项目(17-JF024);; 西安市碑林区科技计划项目(GX1617);; 陕西省复杂系统控制与智能信息处理重点实验室(西安理工大学)开放课题基金项目(2016CP05);; 特殊环境机器人技术四川省重点实验室开放基金项目(17kftk04)资助
  • 语种:中文;
  • 页:GUAN201803037
  • 页数:7
  • CN:03
  • ISSN:11-2200/O4
  • 分类号:179-185
摘要
紫外光与雾霾粒子发生散射后,其散射信道特性能够反映雾霾粒子的相关物理信息,利用无线紫外光单次和多次散射信道模型,采用Mie散射和T矩阵理论分析了霾粒子在不同形态和浓度下的紫外光散射信道特性,以及散射角对散射光强的影响,并完成了紫外光在雾霾环境下的实测。通过理论及仿真分析,得到了不同霾粒子形态下的紫外光通信路径损耗以及光强分布。结果表明:紫外光直视通信方式下,路径损耗随着霾粒子浓度的增大而增大,且通信质量差于晴朗天。非直视通信方式中,在短距离通信时,高霾浓度下的路径损耗小于中低霾浓度,然而随着通信距离的继续增大,高雾霾浓度下的通信质量急剧下降,低霾浓度下通信质量最终达到最优,且距离为200m时通信质量能优于晴朗环境。当通信距离相同时,三种雾霾浓度下的紫外光散射光强分布均随着散射角的增大而减小,当散射角继续增大并超过90°时,低霾浓度下的散射光强最大。主要原因是虽然散射角继续增大,但是有效散射体体积逐渐减小,因此低霾浓度下的散射光强较大。且当粒子粒径相同时,球形粒子的衰减较非球形粒子大。雾霾环境下实测结果与仿真结果相类似,证明了仿真结果的正确性,并在一定程度上证明了实际大气中雾霾非球形粒子多于球形粒子。
        Ultraviolet(UV)is scattered by atmospheric haze particles,the changes of scattering channel characteristics in atmosphere haze can reflect the physical properties of the particles.The scattering channel characteristics of UV in different haze particle form and concentrationwere analyzed based on wireless ultraviolet single and multiple scattering channel model,Mie scattering and T-matrix theory.The effect of scattering angle on the scattering intensity was researched;finally the experiment of UV light was completed.After theoretical and simulation analysis,the path loss and intensity distribution of UV communication under different haze particle form were obtained.The results showed that under UV line-of-sight(LOS)communication method,the path loss increased with the increase of haze particle concentration,and the communication quality was worse than sunny days;In short distance non-line-of-sight(NLOS)communication mode,the path loss at high haze concentration was lower than low concentration.However,as the communication distance continued to increase,communication quality of high haze concentration decreased sharply and achieved optimal in low haze concentration finally.The communication distance at 200 m was better than sunny environment.When the communication distance was the same,the intensity distribution of ultraviolet scattering at three kinds of haze concentrations decreased with the increase of scattering angle.when the scattering angle increased and more than 90 degrees,the scattering intensity under the low haze concentration was the highest.The main reason was that although the scattering angle continued to increase,the effective scattering volume decreased,so the scattering intensity in low haze concentration is larger.Moreover,when the particle size was the same,the attenuation of spherical particles was larger than non-spherical particles.The experimental results were similar to the simulation results,which proved the correctness of the simulation results.And to some extent,it proves that non-spherical particles are more than spherical particles in the atmosphere.
引文
[1]Gao Y,Guo X Y,Ji H B,et al.Atmospheric Research,2016,178:6.
    [2]CHEN Xi,DU Peng,GUAN Qing,et al(陈曦,杜鹏,关清,等).Spectroscopy and Spectral Analysis(光谱学与光谱分析),2015,35(6):1724.
    [3]ZHAO Tai-fei,KE Xi-zheng(赵太飞,柯熙政).Acta Physica Sinica(物理学报),2012,61(11):285.
    [4]Xu Changming,Zhang Hongming,Cheng Julian.Optics Express,2015,23(18):23259.
    [5]Liao Linchao,Drost Robert J,Li Zening,et al.IET Optoelectronics,2015,9(5):223.
    [6]Ceolato R,Riviere N.Journal of Quantitative Spectroscopy and Radiative Transfer,2016,178:117.
    [7]Esmail M A,Fathallah H,Alouini M S.Analysis of Fog Effects on Terrestrial Free Space Optical Communication Links.in Proc IEEE Int.Conf.Commun.Workshops(ICC),2016.151.
    [8]YANG Ying,HUANG Zhu-qing,CAO Xiao-ling(杨颖,黄竹青,曹小玲).Laser&Infrared(激光与红外),2013,43(12):1376.
    [9]SHAO Chang-cheng,MA Jin-ji(邵长城,麻金继).Journal of Atomic and Molecular Physics(原子与分子物理学报),2010,27(3):475.
    [10]Mishchenko M L,Travis L D,Lacis A A.Scattering,Absorption,and Emission of Light by Small Particles(微粒的光散射、吸收和发射).Translated by WANG Jiang-an,WU Rong-hua,MA Zhi-guo(王江安,吴荣华,马治国,译).Beijing:National Defense Industry Press(北京:国防工业出版社),2013.104.
    [11]YAO Rui-zhong(饶瑞中).Modern Atmospheric Optics(现代大气光学).Beijing:Science Press(北京:科学出版社),2012.113.
    [12]CHEN Yi-na,ZHAO Pu-sheng,HE Di(陈一娜,赵普生,何迪).Environmental Science(环境科学),2015,36(10):3582.
    [13]ZHAO Tai-fei,JIN-Dan,SONG Peng(赵太飞,金丹,宋鹏).Chinese Journal of Lasere(中国激光),2015,42(6):152.
    [14]KE Xi-zheng(柯熙政).UV Ad-Hoc Network Theory(紫外光自组织网络理论).Beijing:Science Press(北京:科学出版社),2011.44.
    [15]LANG Hong-mei,QIN Kai,YUAN Li-mei,et al(郎红梅,秦凯,袁丽梅,等).China Environmental Science(中国环境科学),2016,36(8):2260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700