深部高地应力条件下双孔爆破岩体损伤数值模拟及试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation and Experimental Study of Rock Mass Damage caused by Double-hole Blasting Deep In-situ Stress Conditions
  • 作者:崔正荣 ; 汪禹 ; 仪海豹 ; 杨海涛 ; 金科
  • 英文作者:CUI Zheng-rong;WANG Yu;YI Hai-bao;YANG Hai-tao;JIN Ke;Sinosteel Maanshan Institute of Mining Research Co Ltd;Maanshan Institute of Mining Research Blasting Engineering Co Ltd;
  • 关键词:深部开采 ; 损伤破坏 ; 数值模拟 ; 促进作用 ; 爆破效果
  • 英文关键词:deep mining;;damage and failure;;numerical simulation;;promotion;;blasting effect
  • 中文刊名:BOPO
  • 英文刊名:Blasting
  • 机构:中钢集团马鞍山矿山研究院有限公司;马鞍山矿山研究院爆破工程有限责任公司;
  • 出版日期:2019-06-15
  • 出版单位:爆破
  • 年:2019
  • 期:v.36;No.152
  • 基金:“十三五”国家重点研发计划课题——深部高储能矿岩组孔超前致裂精准爆破技术(*2017YFC0602902)
  • 语种:中文;
  • 页:BOPO201902013
  • 页数:6
  • CN:02
  • ISSN:42-1164/TJ
  • 分类号:65-70
摘要
随着开采深度的增加,岩体开挖过程中其受力状态将发生改变,岩体爆破破坏作用将由原来的爆破动荷载转变为爆破动荷载和地应力静荷载形成的耦合荷载。基于ANSYS/LS-DYNA模拟软件,开展了开采深度为1000 m、1500 m和2000 m条件下岩体双孔爆破数值模拟。结果表明:随着开采深度的增加,地应力随之增大,通过布置合理的诱导工程,使得岩体X方向损伤半径由3.81 m增大至13.62 m,增加幅度达257.48%;Y方向损伤半径由3.65 m增大至11.66 m,增加幅度达219.45%;损伤深部由10.08 m增加到22.34 m,增加幅度达到121.63%。在此基础上,开展了开采深度为780m、1000 m条件下现场爆破漏斗试验,试验结果表明:随着开采深度的增加,岩石爆破漏斗深度、漏斗体积等呈上升趋势,岩石炸药单耗呈降低趋势,降低幅度达4.79%,进一步验证地应力对岩体爆破致裂起促进作用。
        With the increase of mining depth,the stress state of rock mass will change in the process of excavation,and the blasting failure of rock mass will also change from the original blasting dynamic load to the coupling load from blasting dynamic load and geostress static load.Based on ANSYS/LS-DYNA simulation software,numerical simulation of double-hole blasting in rock mass with mining depth of 1000 m,1500 m and 2000 m was carried out.Results show the in-situ stress increases with the mining depth increasing.By arranging reasonable inducing engineering,the damage radius of rock mass increases from 3.81 m to 13.62 m(up to 257.48%) in X direction and increases from 3.65 m to 11.66 m(up to 219.45%) in Y direction.In addition,the damage depth increases from 10.08 m to 22.34 m(up to 121.63%).On this basis,blasting funnel tests were carried out under mining depth 780 m and 1000 m.Results show that,with the increase of mining depth,the depth and volume of rock blasting funnel show an upward trend,and the unit consumption of rock explosive shows a decreasing trend,accompanied with a reduction of 4.79%,which further verifies that in-situ stress plays a promoting role in rock blasting cracking.
引文
[1] 谢和平,高峰,鞠杨.深部岩体力学研究与探索[J].岩石力学与工程学报,2015,34(11):2161-2178.[1] XIE He-ping,GAO Feng,JU Yang.Research and development of rock mechanics in deep ground engineering[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2161-2178.(in Chinese)
    [2] 肖思友,姜元俊,刘志祥,等.高地应力下硬岩爆破破岩特性及能量分布研究[J].振动与冲击,2018,37(15):143-149.[2] XIAO Si-you,JIANG Yuan-jun,LIU Zhi-xiang et al.Hard rock blasting energy distribution and fragmentation characteristics under high earth stress[J].Journal of Vibration and Shock,2018,37(15):143-149.(in Chinese)
    [3] 谢理想,卢文波,姜清辉,等.深部岩体在掏槽爆破过程中的损伤演化机制[J].中南大学学报(自然科学版),2017,48(5):1252-1260.[3] XIE Li-xiang,LU Wen-bo,JIANG Qing-hui,et al.Damage evolution mechanism of deep rock mass in process of cut blasting[J].Journal of Central South University (Science and Technology),2017,48(5):1252-1260.(in Chinese)
    [4] 白羽,朱万成,魏晨慧,等.不同地应力条件下双孔爆破的数值模拟[J].岩土力学,2013,34(S1):466- 471.[4] BAI Yu,ZHU Wan-cheng,WEI Chen-Hui,et al.Numerical simulation on two-hole blasting under different in-situ stress conditions[J].Rock and Soil Mechanics,2013,34(S1):466- 471.(in Chinese)
    [5] 张凤鹏,彭建宇,张鑫,等.地应力对岩体爆破影响的数值模拟[J].金属矿山,2015,474(12):15-18.[5] ZHANG Feng-peng,PENG Jian-yu,ZHANG Xin,et al.Numerical simulation of the effect of in-situ stress on rock blasting[J].Metal Mine,2015(12):15-18.( in Chinese)
    [6] 吴亮,卢文波,宗琦.岩石中柱状装药爆炸能量分布[J].岩土力学,2006,27(5):735-739.[6] WU Liang,LU Wen-bo,ZONG Qi.Distribution of explosive energy consumed by column charge in rock[J].Rock and Solid Mechanics,2006,27(5):735-739.(in Chinese)
    [7] 宗琦.岩石爆破的扩腔作用及能量消耗[J].煤炭学报,1997,22(4):392-396.[7] ZONG Qi.Function of cavity expansion and energy consumption in rock blasting[J].Journal of China Coal Society,1997,22(4):392-396.(in Chinese)
    [8] 范勇,卢文波,严鹏,等.地下洞室开挖过程围岩应变能调整力学机制[J].岩土力学,2013,34(12):3580-3585.[8] FAN Yong,LU Wen-bo,YAN Peng et al.Mechanism of strain energy adjustment of surrounding rock during excavation of underground caverns[J].Rock and Soil Mechanics,2013,34(12):3580-3585.(in Chinese)
    [9] YI Chang-ping,DANIEL Johansson,ULF Nyberg,et al.Stress wave interaction between two adjacent blast holes[J].Rock Mechanics and Rock Engineering,2016,49(5):1803-1812.
    [10] 谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003-3010.[10] XIE He-ping,JU Yang,LI Li-yun.Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(17):3003-3010.(in Chinese)
    [11] 张西良,汪禹,崔正荣,等.深部围压对岩体爆破损伤范围影响数值分析[J].爆破,2018,35(2):56- 60.[11] ZHANG Xi-liang,WANG Yu,CUI Zheng-rong,et al.Numerical analysis on influence of deep confining pressure on blasting damage range of rock mass[J].Blasting,2018,35(2):56- 60.(in Chinese)
    [12] OLIVER Heidbach,MARK Tingay,ANDREAS Barth.Global crustal stress pattern based on the world stress map database release 2008[J].Tectonophysics,2009,1(4):1-33.
    [13] BROWN E T,HOEK E.Technical note trends in relationships between measured in-situ stress and depth[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1978,15(4):211-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700