红光与远红光比值对盐胁迫下番茄幼苗抗氧化能力的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Different Red to Far-red Light Ratios on Oxidation Resistance Ability of Tomato Seedling under Salt Stress
  • 作者:于捷 ; 艾楷棋 ; 何雅倩 ; 杨俊伟 ; 曹凯 ; 王云龙 ; 邹志荣
  • 英文作者:YU Jie;AI Kaiqi;HE Yaqian;YANG Junwei;CAO Kai;WANG Yunlong;ZOU Zhirong;Guangxi Zhong Nong Fu Yu International Agricultural Science and Technology Co.,Ltd.;The Agriculture Ministry Key Laboratory of Protected Horticultural Engineering in Northwest,Department of Horticulture,Northwest A&F University;
  • 关键词:番茄 ; 盐胁迫 ; 红光与远红光比值 ; 光敏色素B1 ; 抗氧化能力
  • 英文关键词:Solanum lycopersicum L.;;salt stress;;red to far-red light ratio;;phytochrome B1;;antioxidant ability
  • 中文刊名:DNYX
  • 英文刊名:Acta Botanica Boreali-Occidentalia Sinica
  • 机构:广西中农富玉国际农业科技有限公司;西北农林科技大学园艺学院农业部西北设施园艺工程重点实验室;
  • 出版日期:2018-08-15
  • 出版单位:西北植物学报
  • 年:2018
  • 期:v.38
  • 基金:广西壮族自治区科技厅重点研发项目(AA16380048)
  • 语种:中文;
  • 页:DNYX201808015
  • 页数:11
  • CN:08
  • ISSN:61-1091/Q
  • 分类号:119-129
摘要
该试验以‘Money Maker’野生型(CK)和以‘Money Maker’为背景的光敏色素B1突变体(phyB1)番茄植株为试材,分析红光与远红光比值(R∶FR)分别为7.4、1.2和0.8的光环境下,受盐胁迫(100mmol·L-1 NaCl)的番茄幼苗根系形态指标及叶和根中渗透调节物质含量、活性氧含量、抗氧化酶活性、MDA含量和相对电解质渗透率的变化,以解释不同R∶FR值对番茄幼苗抗氧化能力的影响以及光敏色素B1在其中的作用。结果显示:(1)在盐胁迫条件下,野生型和突变体phyB1番茄幼苗的根系形态指标(总根长、总根表面积、根尖数、根叉数)比对照显著降低,叶和根中渗透调节物质(可溶性蛋白和脯氨酸)含量、活性氧(O-·2和H2O2)含量、抗氧化酶(SOD、POD、CAT)活性、MDA含量和相对电解质渗透率均比对照显著升高。(2)在盐胁迫条件下降低植株生长光环境中的R∶FR值,野生型番茄植株的根系形态指标以及叶和根中渗透调节物质含量及抗氧化酶活性均比盐胁迫下显著升高,叶和根中活性氧含量、MDA含量和相对电解质渗透率均比盐胁迫下显著降低,而在phyB1突变体番茄植株中,以上指标在不同R∶FR值处理间均没有显著变化。研究发现,低R∶FR值能够促进野生型番茄根系的生长,提高叶和根中渗透调节物质含量和抗氧化酶活性,降低叶和根中活性氧含量、MDA含量和相对电解质渗透率,增强野生型番茄幼苗的抗氧化能力,促进番茄幼苗的生长,且当R∶FR值为0.8时整体效果最优;光敏色素B1在低R∶FR值促进番茄幼苗抗氧化能力中发挥了重要作用。
        In this study,cv. MoneyMaker(Solanum lycopersicum L.)wild type and MoneyMaker backgrounded phytochrome B1 mutant(phyB1)were used as the materials.The changes of seedling root mor-phology indexes,osmotic regulation substance contents,active oxygen species content,antioxidant enzyme activities,MDA content and relative electrolyte permeability in leaf and root under salt stress(100 mmol·L-1 NaCl)were analyzed at the light environment that red light to far red light ratios(R∶FR)were 7.4,1.2 and 0.8.The aim was to study the effects of different R∶FR values on oxidation resistance ability of tomato seedlings and the role of phyB1 in these effects.The results show that:(1)Under salt stress,wild type tomato seedlings and phyB1 mutant tomato seedlings significantly decreased root morphology indexes(total root length,total root surface area,number of root tips,number of root forks)compared with CK,significantly increased osmotic regulation substance(soluble protein and proline)contents,active oxygen species(O-·2 and H2 O2)content,antioxidant enzyme(SOD,POD,CAT)activities,MDA content and relative electrolyte permeability in leaf and root compared with CK.(2)Reducing R∶FR value of growth light environment under salt stress,wild type tomato seedlings significantly increased root morphology indexes,osmotic regulation substance contents,antioxidant enzyme activities in leaf and root compared with seedlings under salt stress,significantly decreased active oxygen species content,MDA content and relative electrolyte permeability in leaf and root compared with seedlings under salt stress,but the indexes mentioned above had no significantly different in phyB1 mutant tomato seedlings among different R∶FR values.This research suggests that the lower R∶FR value promoted wild type tomato root growth,increased osmotic regulation substance contents and antioxidant enzyme activities,decreased active oxygen species content in leaf and root,MDA content and relative electrolyte permeability in leaf and root,so that improved the oxidation resistance ability of wild type tomato,promoted the growth of tomato,when R∶FR value was 0.8 the improvement effects of oxidation resistance ability was the best;and phyB1 play an important role in lower R∶FR value improving oxidation resistance ability of tomato.
引文
[1]ROZEMA J,FLOWERS T.Crops for a salinized world[J].Science,2008,322(5 907):1 478-1 480.
    [2]SENARATNA T,MCKERSIE B D,STINSON R H.Simulation of Dehydration Injury to Membranes from Soybean Axes by Free Radicals[J].Plat Physiol.,1985,77:472-474.
    [3]TUNA A L,KAYA C,ASHRAF M,et al.The effects of calcium sulphate on growth,membrane stability and nutrient uptake of tomato plants grown under salt stress[J].Ehviroh Exp.Bot.,2007,59:173-178.
    [4]SMITH H.Light quality,photoperception and plant strategy[J].Annu.Rev.Plant Physiol.1982,33:481-518.
    [5]ROIG-VILLANOVA I,MARTNEZ-GARCA J F.Plant responses to vegetation proximity:a whole life avoiding shade[J].Frontiers in Plant Science,2016,7(117):236.
    [6]CAO K,CUI L R,ZHOU X T,et al.Four Tomato FLOWERING LOCUS T-like proteins act antagonistically to regulate floral initiation[J].Frontiers in Plant Science,2015,6(1):14-17.
    [7]CARVALHO R F,CAMPOS M L,et al.The role of phytochrome in stress tolerance[J].J.Integr Plant Biol.,2011,53:920-929.
    [8]KIYOTA S,XIE X,et al.Phytochromes A and C cooperatively regulate early and transient gene expression after redlight irradiation in rice seedlings[J].Plant Physiol.Biochem.,2012,51:10-17.
    [9]INDORF M,CORDERO J,NEUHAUS G,et al.Salt tolerance(STO),a stress-related protein,has a major role in light signalling[J].Plant J.,2007,51:563-574.
    [10]WELLER J L,SCHREUDER M E L,et al.Physiological interactions of phytochromes A,B1and B2in the control of development in tomato[J].Plant Journal.2010,24(3):345-356.
    [11]SHEEHAN M,KENNEDY L,COSTICH D T.Subfunctionalization of PhyB1and PhyB2in the control of seedling and mature plant traits in maize[J].Plant Journal for Cell&Molecular Biology.2010,49(2):338-353.
    [12]赵杰,周晋军,顾建伟,等.光敏色素B正调控水稻叶绿素合成和叶绿体的发育[J].中国水稻科学,2012,26(6):637-642.ZHAO J,ZHOU J J,GU J W,et al.Phytochrome B positively regulates chlorophyll biosynthesis and chloroplast development in rice[J].Chinese Journal of Rice Science,2012,26(6):637-642.
    [13]GAVASSI M A,MONTEIRO C C,CAMPOS M L,et al.Phytochromes are key regulators of abiotic stress responses in tomato[J].Scientia Horticulturae.2017.222:126-135.
    [14]GHEL F A,GAZIOLA S A,et al.Cloning,expression,molecular modelling and docking analysis of glutathione transferase from Saccharum of ficinarum[J].Ann Appl.Biol.,2011,159:267-280.
    [15]ZHONG H H,RESNICK A S,STRAUME M,et al.Effects of synergistic signaling by phytochrome A and cryptochrome1on circadian clock-regulated catalase expression[J].Plant Cell,1997,9:947-955.
    [16]TUNA AL,KAYA C,et al.Silicon improves salinity tolerance in wheat plants[J].Environ.Exp.Bot.,2008,62:10-16.
    [17]SHI Y,ZHANG Y,et al.Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress[J].Plant Physiol.Biochem.,2014,78:27-36.
    [18]李合生,孙群,赵世杰等.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,184-185,258-260.
    [19]JIANG M Y,ZHANG J H.Effect of abscisic acid on active oxygen species,antioxidative defence system and oxidative damage in leaves of maize seedlings[J].Plant Cell Physiol.,2001,42(11):1 265-1 273.
    [20]UCHIDA A,JAGENDORF A T,et al.2002.Effects of hydrogen peroxide and nitricoxide on both salt and heat stress tolerance in rice[J].Plant Science,2002,163(3):515-523.
    [21]PUYANG X,AN M,HAN L,et al.Protective effect of spermidine on salt stress induced oxidativedamage in two kentucky bluegrass(Poa pratensis L.)cultivars[J].Ecotox Environ Safe,2015,117:96-106.
    [22]JU X T,KOU C L,ZHANG F S.Nitrogen balance and groundwater nitrate contamination:Comparison among three intensive cropping systems on the North China Plain[J].Environmental Pollution,2006,143(1):117-125.
    [23]ZHANG W L,TIAN Z X,ZHANG N,et al.Nitrate pollution of ground-water in northern China[J].Agriculture,Ecosystems&Environment,1996,59(3):223-231.
    [24]CASAL J J,SNCHEZ R A,VIERSTRA R D.Avena phytochrome A overexpressed in transgenic tobacco seedlings differentially affects red/far-red reversible and very-low-fluence responses(cotyledon unfolding)during de-etiolation[J].Planta,1994,192(3):306-309.
    [25]SALISBURY F J,HALL A,GRIERSON C S,et al.Phytochrome coordinates Arabidopsis shoot and root development[J].The Plant Journal,2007,50(3):429-438.
    [26]DE SIMONE S,OKA Y,INOUE Y.Effect of light on root hair formation in Arabidopsis thaliana phytochrome-deficient mutants[J].Journal of Plant Research,2000,113(1):63-69.
    [27]郝峰鸽,周俊国,周秀梅.NaCl胁迫对喜树幼苗生长和叶片生理特性的影响[J].东北林业大学学报,2010,38(1):18-19.HAO F G,ZHOU J G,ZHOU X M.Effects of NaCl stress on leaf physiological characteristics and growth of Camptotheca acuminata seedlings[J].Journal of Northeast Forestry University,2010,38(1):18-19.
    [28]COCKBURN W,WHITELAM G C,BROAD A,Smith J.The participation of phytochrome in the signal transduction pathway of salt stress responses in Mesembryanthemum crystallinum L[J].J.Exp.Bot.,1996,47:647-653.
    [29]APEL K,HIRT H.2004.Reactive oxygen species:Metabolism,oxidative stress,and signal transduction[J].Annual Review of Plant Biology,2004,55:373-399.
    [30]ZHANG Z J,LI H Z,ZHOU W J,et al.Effect of 5-Aminolevulinic Acid on Development and Salt Tolerance of Potato(Solanum tuberosum L.)Microtubers in vitro[J].Plant Growth Regulation,2006,49(1):27-34.
    [31]PARIDA A K,DAS A B.Salt tolerance and salinity effects on plants:A review[J].Ecotoxicology and Environmental Safety,2005,60(3):324-349.
    [32]MARINA A G,CAROLINA C M,MARCELO L C,et al.Phytochromes are key regulators of abiotic stress responses in tomato[J].Scientia Horticulturae,2017,222:126-135.
    [33]SHI Y,ZHANG Y,et al.Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress[J].Plant Physiol.Biochem.,2014,78:27-36.
    [34]马文涛,樊卫国.贵州野生柑橘的抗旱性及其活性氧代谢对干旱胁迫的响应[J].果树学报,2014,31(3):394-400.MA W T,FAN W G.Drought resistance and response of active oxygen metabolism of wild citrus seedlings of Guizhou under drought stress[J].Journal of Fruit Science,2014,31(3):394-400.
    [35]GONG H J,ZHU X Y,CHEN K M,et al.Silicon alleviates oxidative damage of wheat plants in pots under drought[J].Plant Sci.,2005,169:313-321
    [36]MEREWITZ E,MEYER W,BONOS S,et al.Drought stress responses and recovery of Texas×Kentucky hybrids and Kentucky bluegrass genotypes in temperate climate conditions[J].Agron J,2010,102(1):258-268.
    [37]GAVASSI M A,MONTEIRO C C,CAMPOS M L,et al.Phytochromes are key regulators of abiotic stress responses in tomato[J].Scientia Horticulturae,2017,222:126-135.
    [38]GURURANI M A,GANESAN M,SONG I J,et al.Transgenic turfgrasses expressing hyperactive Ser599Ala Phytochrome A mutant exhibit abiotic stress tolerance[J].Journal of Plant Growth Regulation,2016,35(1):11-21.
    [39]DEMOTES M S,PRON T,COROT A,et al.Plant responses to red and far-red lights,applications in horticulture[J].Environmental and Experimental Botany,2016,121:4-21.
    [40]ALVES F R R,DE MELO H C,CRISPIM F A J,et al.Physiological and biochemical responses of photomorphogenic tomato mutants(cv.Micro-Tom)under water withholding[J].Acta Physiologiae Plantarum,2016,38(6):155.
    [41]HAUSER B A,PRATT L H,CORDONNIER-PRATT MM.Absolute quantification of five phytochrome transcripts in seedlings and mature plants of tomato(Solanum lycopersicum L.)[J].Planta,1997,201(3):379-387.
    [42]WELLER J L,SCHREUDER M E,et al.Physiological interactions of phytochrome A,B1and B2in the control of development in tomato[J].The Plant Journal,2000,24(3):345-356.
    [43]FRANKLIN K A,QUAIL P H.Phytochrome functions in Arabidopsis development[J].Journal of Experimental Botany,2010,61(1):11-24.
    [44]FAHAD S,HUSSAIN S,MATLOOB A,et al.Phytohormones and plant responses to salinity stress:a review[J].Plant Growth Regulation,2015,75(2):391-404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700